LASER in Industrial Application

Dr. Enas A. Khalid

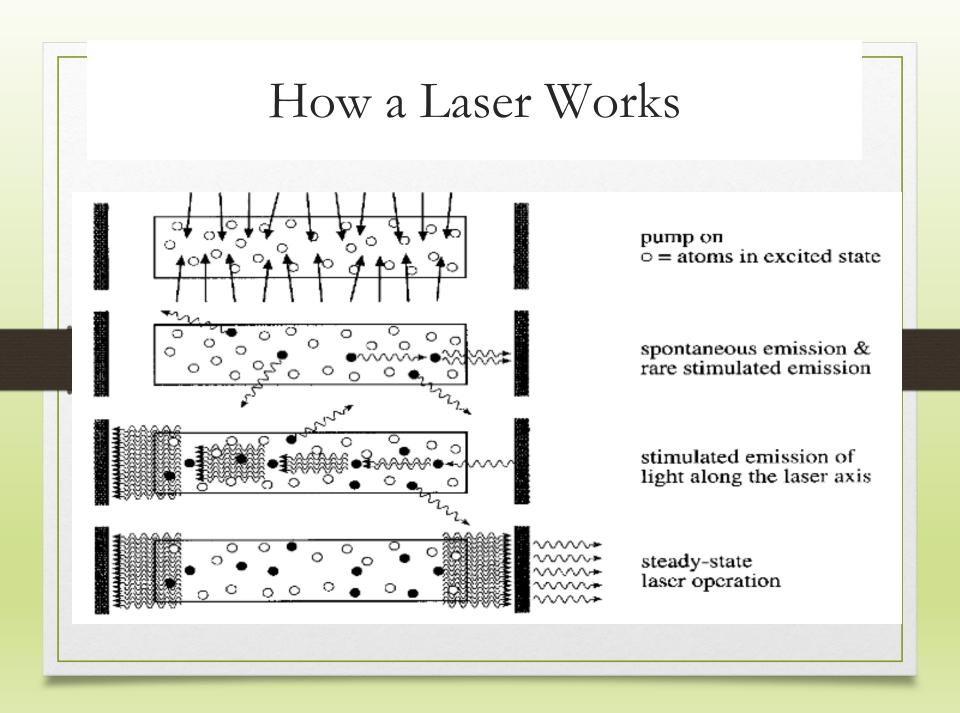
What is Laser?

Light Amplification by Stimulated Emission of Radiation

- A device produces a coherent beam of optical radiation stimulating electronic, ionic, or molecular transitions to high energy levels
- Mainly used in Single Mode Systems
- Require Higher complex driver circuitry than LEDs
- Laser action occurs from three main processes: photon absorption, spontaneous emission, and stimulated emission.

Properties of Laser

• Monochromatic


Concentrate in a narrow range of wavelengths (one specific colour).

Coherent

All the emitted photons bear a constant phase relationship with each other in both time and phase

• Directional

A very tight beam which is very strong and concentrated.

INTRODUCTION

- Laser materials processing is done on various materials such as metals, alloys, ceramics, glass, polymer materials.
- New manufacturing process is based on Laser as a tool.
- Laser processing provides a competitive advantage over traditional methods of industrial fabrications.
- High power Pulsed, Continues wave or both forms of Laser beam are used.
- Novel applications using Lasers are still emerging everyday.

Total Industrial Laser Applications

 CO2 lasers are primarily deployed for cutting, welding and drilling of medium-size and large workpieces.

Laser Interaction with Materials

- Two types of Laser processes:-
- a) Athermal Processing- Photoelectric, Photochemical & Photophysical.
- b) Thermal Processing- Heating, Melting & Vaporization.
- When a laser beam is incident on a metal or other material, the radiation energy is absorbed, and the material heats up.
- Depending on the amount of absorbed energy and interaction time, the material is even melted or vaporized.
- Once the surface of the materials absorbs energy, the material starts to melt and then vaporize.

Type of Industrial Lasers

Lasers widely used in material processing are CO2 laser and Nd:YAG laser.

CO2 Lasers :

- CO2 lasers operate at 10.6µm. Metals having high reflectivity and Glass have better absorption at this wavelength.
- Instead of CW CO2 laser, a pulsed mode CO2 laser produces high peak powers and makes possible to work on metals.

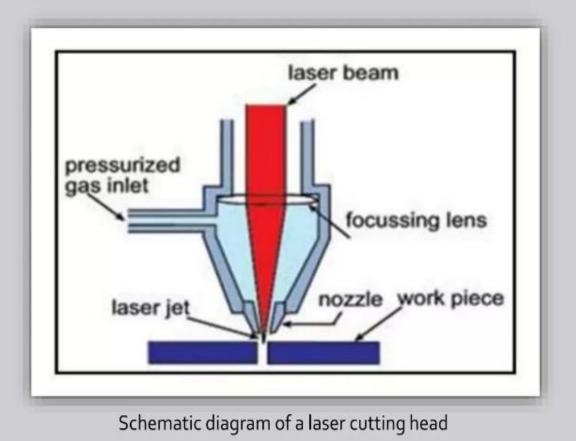
Nd:YAG lasers :

- Nd:YAG lasers operate at 1.06µm, can be focused to a smaller diameter and fiber optic beam delivery is possible.
- Nd:YAG lasers offer the advantage of compactness.

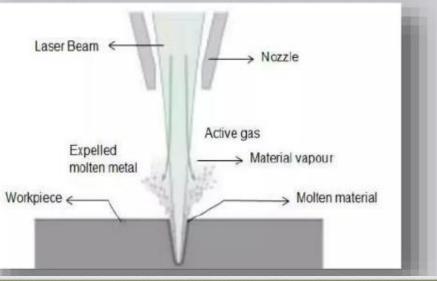
CO2 lasers are cheaper compared to Nd:YAG lasers.

- CO2 lasers are more generally preferred laser.
 - Multikilowatt fiber lasers are also used.

Laser Cutting


- Cutting of Metal Sheets, Foils and Glasses. Provides high edge quality.
- Laser cutting is highly focusable to about 25 microns.
- Computer Numerical Control (CNC) programmed cutting machines.
- Melt fusion mechanism- material is expelled by the kinetic energy of a assist gas.
- The efficiency of laser cutting can be increased by making use of a gas jet coaxial with the laser.

CO₂ **laser** (1kw-10kw). Use of assist gas like Ar, He, N₂.


Conventional cutting methods:

- Plasma arc cutting
- Mechanical cutting
- Water jet cutting
- Glass cutting using diamond

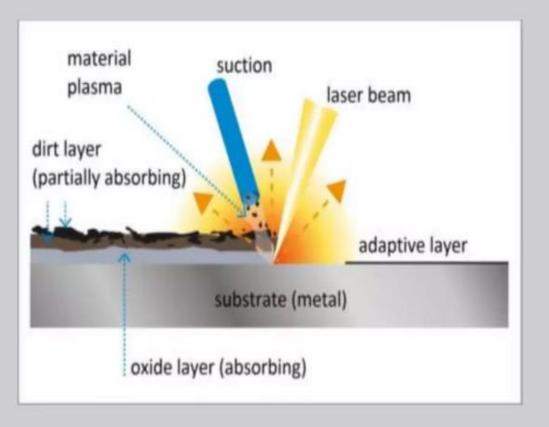
Laser Drilling

- A series of pulses is fired at a fixed location on the workpiece.
- Usually powerful light pulses of duration 10⁻⁴ to 10⁻⁶ sec is used.
- The material subject to laser drilling is vaporized and melted layer by layer until drill holes are created.
- Radiation becomes trapped in the keyhole, inducing plasma formation.
- Use of assist gas like O₂.
 - Conventional drilling methods:
 - Mechanical drilling
 - Mechanical punching
 - Electro chemical machining
 - Electro discharge machining

- Metal sheets are welded together by so-called heat conduction welding.
- The laser beam heats the edges of two plates to their melting points and cause them to fuse together where they are in contact.
- Laser beam is scanned over the surface of the mating parts along common joint.
- Widely used in Automobile, Electronics, Jewellery, Engineering manufacturing industries.

Conventional welding methods:

- Resistance welding
- Ultrasonic welding
- Soldering
- Brazing


- Laser cleaning is an non-contact process used to remove rust, paint, oxide and other contaminants from metal surfaces.
- The physical reaction during the surface cleaning of metal surface oxide is also known as Ablation.
- Laser ablation occurs when a material layer or a coating is removed with a laser beam.
- Vaporize the undesired material into fumes by heating effect of Laser beam.
- Energy transferred by the laser beam must be above the ablation threshold.
- Laser cleaning requires a pulsed fiber laser (typically 50 watts or more).

Conventional cleaning methods:

- Oxides removal using hazardous chemicals.
- Paint removal by sand blasting.

<u>Surface Cleaning</u> <u>Applications</u>

- Old paint removing
- Fine finish surfaces
- Rust & Oxide removing
- Welding pre & post treatments
- Removing oil from the surface of materials
- Removing the burnt rubber residue from tire molds

Other Applications

- Hardening of Ferrous materials- Stainless steels, Titanium alloys.
- Labeling and Marking/Engraving- Serial number, Barcodes.
- Production of Semiconductor Devices- Laser Annealing.
- Laser Deposition of Thin film- Photolithography.
- Electronic Components- PCB fabrication.
- Optical communications.
- Military.

Advantages

- Accuracy & Precision.
- Non-contact technique.
- Rapid processing.
- Multi functional machines.
- Flexible beam guiding through **optical fibers**.
- Beam can be focused to very small to large areas.
- Compactable with **computer-aided manufacturing** (CAM) systems.
- Absence of tool wear and tear.

THANK YOU