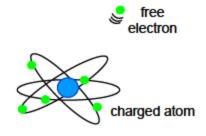
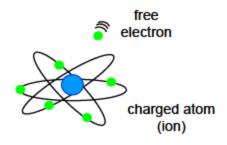
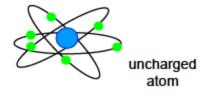
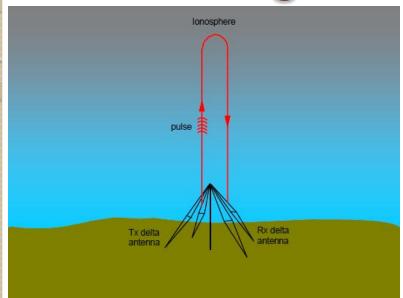

By Ahmed Al Banna

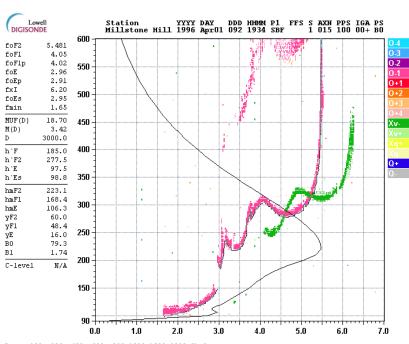

Information and communication engineering department / Al Khwarizmi college of engineering / University of Baghdad

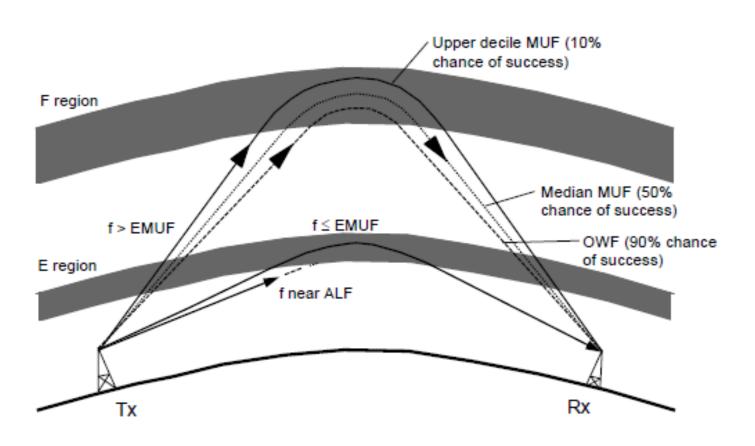

Introduction to HF Radio Propagation

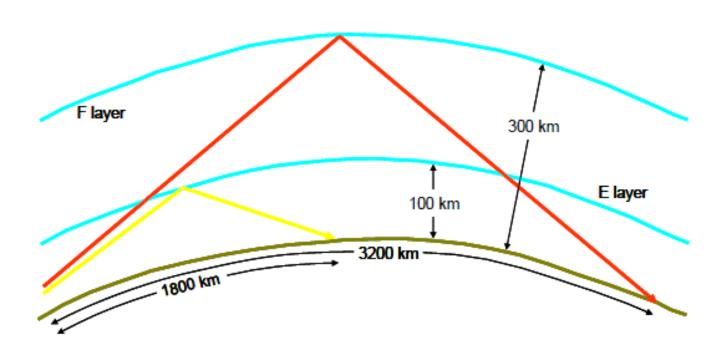


Production and losses of electrons






Observing the ionosphere



D 100 200 400 600 800 1000 1500 3000 [km] MUF 6.2 6.2 6.5 7.0 7.7 8.6 11.4 18.7 [MHz] 6092T34K.SBF / 2806K512k 28 kMz 2.5 km / DPS-1 MM145 042 / 42.6 N 288.5 E

HF sky wave geometry

MUF

Prediction of MUF using VOCAP

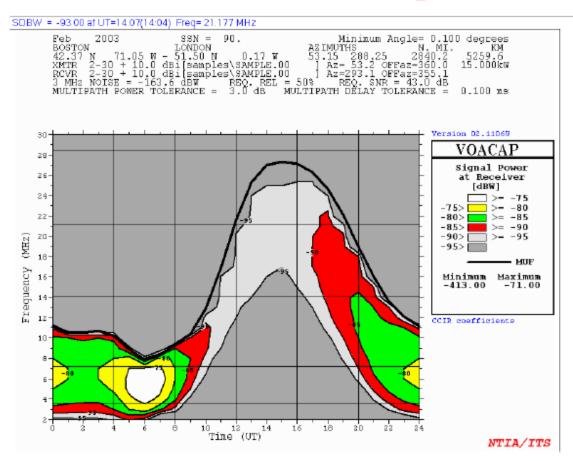
What is VOCAP?

VOACAP, or the Voice of America Coverage Analysis Program, is a software tool that predicts radio propagation for high-frequency (HF) broadcasts by modeling how signals travel through the atmosphere

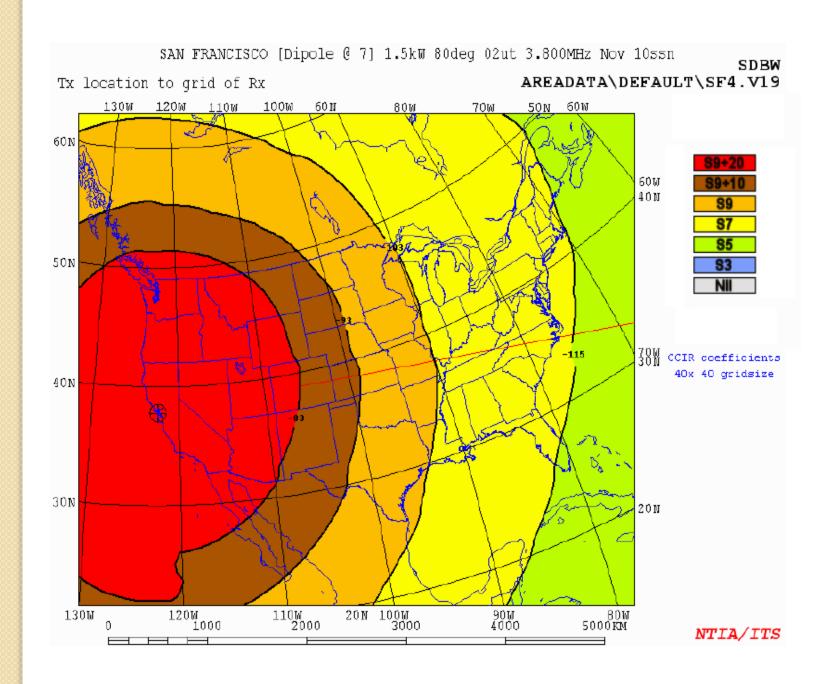
VOACAP

- •VOACAP is considered the "gold standard" of HF propagation-prediction programs, but it is difficult to use
- .•VOACAP is for point-to-point predictions (one transmitter site to one receiver site).
- •VOACAP produces lengthy tabular printouts that require a lot of interpretation and massaging.

Typical VOACAP Tabular Output

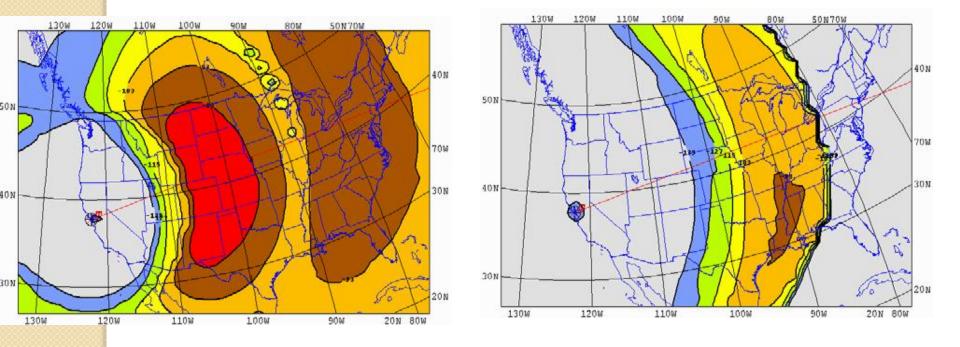

Oct	1994	994 SSN = 100.			Minimum Angle= 0.100 degrees				
SAN FR	ANCISCO	LONDON		AZIMUI	HS	N. MI.	KΜ		
37.78	N 122.42 W -	- 51.50 N	0.17 W	32.64	316.78	4651.1	8613.2		
XMIR	2-30 + 10.0 0	Bi[samples	SAMPLE.00] Az=	52.9 OFFa	z=339.7	1.500kW		
RCVR 2-30 + 10.0 dBi[samples\SAMPLE.00] Az=234.9 OFFaz= 81.9									
3 MHz	NOISE = -163	.6 dBW I	REQ.REL = 9	50% R	EQ. SNR =	43.0 dB			

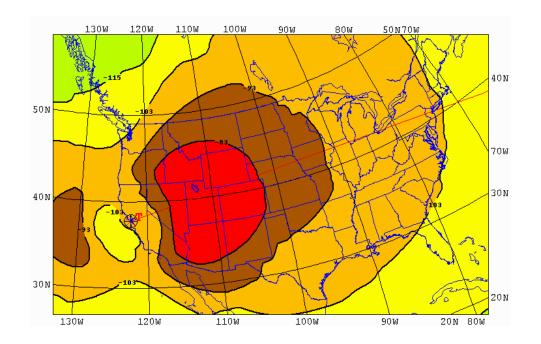
SUMMARY	6 MODES	FREQ = 14	.1 MHZ UT	= 15.0				
							Most REL	
	3.F2	4.F2	4. E	5.F2	5.F2	5. E	3.F2	← Mode
TIME DEL.	29.87	30.41	29.17	31.76	31.89	29.37	29.87	T1 1
ANGLE	4.57	10.22	1.72	17.85	18.35	5.06	4.57	←−−− Elev. angle
VIR. HITE	287.27	297.20	125.30	353.16	362.42	137.00	287.27	
TRAN.LOSS	149.88	158.17	602.22	184.45	187.14	1037.71	149.88	
T. GAIN	10.00	10.00	10.00	10.00	10.00	10.00	10.00	Signal power,
R. GAIN	10.00	10.00	10.00	10.00	10.00	10.00	10.00	•
ABSORB	6.48	5.03	7.01	3.57	3.50	6.37		∠ dBW
FS. LOSS	134.47	134.63	134.27	135.01	135.04	134.33		
FIELD ST.	2.07	-6.22	-450.28	-32.51	-35.20	-885.77	2.67	
SIG. POW.	-118.12	-126.41	-570.46	-152.69	-155.38	-1005.95	-117.52	<u> </u>
SNR	51.41	43.12	-400.93	16.84	14.15	-836.42	52.01	SNR, in 1 Hz BW
MODE PROB	0.95	0.77	0.01	0.39	0.39	0.00	0.95	📦
R. FWRG	1000.00	1000.00	1000.00	1000.00	1000.00	1000.00	-9.01	
RELIABIL	0.70	0.50	0.00	0.10	0.07	0.00	0.71	
					_			Mode


"Method 25": "All modes table," for one frequency, for each hour -- the output file is huge (about 250 kB = 28 printed pages)

probability

VOACAP Graphs?




This graph looks pretty, but it doesn't really give that much useful information for planning.

VOAAREA

- VOAAREA uses the VOACAP engine to produce areawide coverage from a single transmitting site for a single frequency.
- •VOAAREA charts are arguably the most intuitive presentation of propagation data —but only for a single frequency and a single UTC time.
- •This makes it difficult to get the big picture, unless charts for several frequencies are combined in a montage, good for one hour at a time. A series of these makes a sort of "movie" to use while operating.

Thnk u