Java Programming Fundamentals

1- What is Java?

Java is a popular programming language, created in 1995. It is a powerful general-
purpose programming language. According to Oracle, the company that owns Java,
Java runs on 3 billion devices worldwide, which makes Java one of the most popular
programming languages.

It is used for:

* Mobile applications (specially Android apps) and desktop applications.
* Web applications

* Games

* Database connection and big data processing

* And much, much more!

Our Java tutorial will guide you to learn Java one step at a time.

2- Why Use Java?

 Java works on different platforms (Windows, Mac, Linux, Raspberry Pi, etc.)

It is one of the most popular programming language in the world

 Itis easy to learn and simple to use

* It is open-source and free

* It is secure, fast and powerful

* It has a huge community support (tens of millions of developers)

» Java is an object oriented language which gives a clear structure to programs
and allows code to be reused, lowering development costs

« As Java is close to C++ and C#, it makes it easy for programmers to switch to
Java or vice versa

https://www.w3schools.com/cpp/default.asp
https://www.w3schools.com/cs/default.asp

Java Programming Fundamentals

3- Java Quickstart

In Java, every application begins with a class name, and that class must match the
filename. Let's create our first Java file, called MyClass.java. The file should contain
a "Hello World" message and print it to the screen, which is written with the
following code:

MyClass.java

public class MyClass
public static void main(String args
System.out.println{"Hello World"

When you run the program, the output will be:

Hello World

Example explained

Public class MyClass { ... }

In Java, every application begins with a class definition. Every line of code must be
inside a class. In our example, we named the class MyClass. A class should always
start with an uppercase first letter.

Note: Java is case-sensitive: "MyClass" and "myclass" has different meaning.

The name of the java file must match the class name.

public static void main(String[] args) { ... }

This is the main method. Every application in Java must contain the main method.

2

Java Programming Fundamentals

The Java compiler starts executing the code from the main method. The main method
must be inside the class definition.

System.out.println("Hello, World!");

The following code prints the string inside quotation marks Hello World to

standard output (your screen). Notice, this statement is inside the main function,
which is inside the class definition.

4- Java Variables and (Primitive) Data Types

In this tutorial, you will learn about variables, how to create them, and different data
types that Java programming language supports for creating variables.

Java Variables

A variable is a location in memory (storage area) to hold data.

To indicate the storage area, each variable should be given a unique name (identifier).

How to declare variables in Java?

Here's an example to declare a variable in Java.

int price = 80;

Here, price is a variable of int data type and is assigned value 80. Meaning, the price
variable can store integer values. You will learn about Java data types in detail later in
the article.

In the example, we have assigned value to the variable during declaration. However,
it's not mandatory. You can declare variables without assigning the value, and later
you can store the value as you wish. For example,

int price;
price = 80;

Java Programming Fundamentals

The value of a variable can be changed in the program, hence the name 'variable'. For
example,

int price = 80;

price = 90;

Java is a statically-typed language. It means that all variables must be declared before
they can be used.

Also, you cannot change the data type of a variable in Java within the same scope.
So, you cannot do something like this.

int price = 80;
float price;

Java Primitive Data Types

In Java all variables must be declared before they can be used.

int price;

Here, price is a variable, and the data type of the variable is int. The int data type
determines that the price variable can only contain integers.

In simple terms, a variable's data type determines the values a variable can store.
There are 8 data types predefined in Java programming language, known as primitive
data types.

Primitive Data Types

boolean

« The boolean data type has two possible values, either true or false.
« Default value: false.
* They are usually used for true/false conditions. For example,

Java Programming Fundamentals

class BooleanExample {
public static void main(String[] args) {

boolean flag = true;
System.out.println(flag);

}

Output: true

byte
« The byte data type can have values from -128 to 127 (1 byte)
« It's used instead of int or other integer data types to save memory if it's
certain that the value of a variable will be within [-128, 127].

e Default value: 0
* Example:

class ByteExample {
public static void main(String[] args) {

byte range;
range = 124;
System.out.println(range);

Output: 124

short

« The short data type can have values from -32768 to 32767 (2 bytes)

* It's used instead of other integer data types to save memory if it's certain that
the value of the variable will be within [-32768, 32767].

* Default value: 0

* Example:

Java Programming Fundamentals

class ShortExample {
public static void main(String[] args) {

short temperature;
temperature = -200;
System.out.println(temperature);

Output: -200

int
« The int data type can have values from -2,147,483,648 to 2,147,483,647 (4
bytes)
* Default value: 0
e Example:

class IntExample {

public static void main(String[] args) {

int range = -4250000;
System.out.println(range);

}

Output: -4250000

long
« The long data type can have values from -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807 (8 bytes).
* Default value: 0

Java Programming Fundamentals

* Example:
class LongExample {
public static void main(String[] args) {

long range = -42332200000L;
System.out.println(range);

}
Output: -42332200000

float
 Stores fractional numbers. Sufficient for storing 6 to 7 decimal digits (4 bytes)

* Default value: 0.0 (0.0f)
* Example:
class FloatExample {
public static void main(String[] args) {

float number = -42.3f;
System.out.println(number);

¥
Output: -42.3

Notice that, we have used -42.3f instead of -42.3. It's because -42.3 is a
double literal. To tell the compiler to treat -42.3 as float rather than double,

you need to use f or F.

double
 Stores fractional numbers. Sufficient for storing 15 decimal digits (8 bytes)
* Default value: 0.0 (0.0d)
* Example:

Java Programming Fundamentals

class DoubleExample {
public static wvoid main(String[] args) {

double number = -42.3;
System.out.println(number);

}
Output: - 42.3

char
 It's a 16-bit Unicode character (2 bytes)

« The minimum value of the char data type is '\u@000' (0). The maximum
value of the char data type is '\uffff"'.

 Stores a single character/letter or ASCII values

* Example:

class CharExample {
public static void main(String[] args) {

char letter = '\u0051';
System.out.println(letter);

}
Output:Q
You get the output Q because the Unicode value of Q is ' \u0@51"'.

Here is another example:

class CharExample {
public static woid main{String[] args)

char letter1 = "9°";
System.out.printlnletteri);

char letter2 = &65;
System.out.println{letter2);

Java Programming Fundamentals

Output:
9
A

When you print letter1, you will get 9 because letter1 is assigned character '9"' .

When you print letter2, you get A because the ASCII value of 'A" is 65.

String
Java also provides support for character strings via java.lang.String class.

Here's how you can create a String object in Java:

myString = "Programming is awesome";

5- Java Operators

Operators are special symbols (characters) that carry out operations on operands
(variables and values). For example, + is an operator that performs addition.

Java divides the operators into the following groups:

* Arithmetic operators
* Assignment operators
Relational operators
Logical operators
Bitwise operators

Arithmetic Operators

Arithmetic operators are used to perform common mathematical operations.

Java Programming Fundamentals

Operator Name Description Example
+ Addition Adds together two values X+y

- Subtraction Subtracts one value from another X-y

* Multiplication Multiplies two values X*y

/ Division Divides one value by another X/y

%% Modulus Returns the division remainder X %y
++ Increment Increases the value of a variable by 1 +4X

-- Decrement Decreases the value of a variable by 1 ==X

Java Assignment Operators

Assignment operators are used to assign values to variables.

In the example below, we use the assignment operator (=) to assign the value 10 to a
variable called x:

Example
int x = 10;

The addition assignment operator (+=) adds a value to a variable:
Example
int x = 10;

X += 5;

A list of all assignment operators:

10

Java Programming Fundamentals

Operator Example Same As
= Xx=5 X=5

+= X +=3 X=X+3

= ¥ -=3 X=X-3

*= X *=3 X=x%*3

/= X /=3 X=x/3

%= X %=3 X=X5%3
&= X &=3 X=X&3

|= X|=3 XxX=x]|3

A= X N=3 X=x"3
>>= X >>=3 X=X>>3
<<= X <<= 3 X=X<<3

Java Relational (Comparison) Operators

Comparison operators are used to compare two values. It determines the relationship
between the two operands. Depending on the relationship, it is evaluated to either
true or false.

11

Java Programming Fundamentals

Operator Name Example
== Equal to X==Y
l= Not equal x 1=y

> Greater than X >y

< Less than X<y

>= Greater than or equal to X=>=Y
<= Less than or equal to X<=Yy

Java Logical Operators

Logical operators are used to determine the logic between variables or values:

Operator Name Description Example

B8 Logical and Returns true if both statements are x <5 && x < 10
true

[Logical or Returns true if one of the x<5]|x<4

statements is true

! Logical not Reverse the result, returns false if !(x <5 && x < 10)
the result is true

6- Java Basic Input and Output

In Java, you can simply use

System.out.println(); or
System.out.print(); or

System.out.printf();

12

Java Programming Fundamentals

Difference between println(), print() and printf()
« print () - It prints string inside the quotes.
« println() - It prints string inside the quotes similar like print () method.
Then the cursor moves to the beginning of the next line.
« printf() - Tt provides string formatting (similar to printf in C/C++

programming).

Example: print() and printin()

class Output {
public static void main(String[] args) {

System.out.println("1. println "});
System.out.println("2. println "});

System.out.print("1. print ");
System.out.print("2. print"});

Output:

1. println
2. println
1. print 2. print

Example: Print Concatenated Strings

13

https://www.programiz.com/cpp-programming/library-function/cstdio/printf
https://www.programiz.com/cpp-programming/library-function/cstdio/printf

Java Programming Fundamentals

class PrintVariables {
public static void main(String[] args) {

Double number = -10.6;

System.out.println("I am " + "awesome."),
System.out.println{"Number = " + number);

Output:

I am awesome.

Number = -10.6

In the above example, notice the line,

System.out.println("I am " + "awesome.");

"

Here, we have used the + operator to concatenate (join) the two strings: "I am " and

"awesome.".

And also, the line,
System.out.println("Number = " + number);

Here, first the value of variable number is evaluated. Then, the value is concatenated
to the string: "Number ="

Java Input

in this tutorial, you will learn to get input from user using the object of Scanner
class.

In order to use the object of Scanner, we need to import java.util.Scanner
package.

import java.util.Scanner;

14

Java Programming Fundamentals

Then, we need to create an object of the Scanner class. We can use the object to
take input from the user.

Scanner

create an onJect |

Scanner input = new Scanner(System.in);
take input from the user

int number = input.nextInt();

Example: Get Integer Input From the User

import java.util.Scanner;

class Input {
public static void main{5tring[] args) {

Scanner input = new Scanner(System.in);
System.out.print("Enter an integer: ");
int number = input.nextInt();

System.out.println{"You entered " + number),

closing the scanner object

input.cloée{};

Output:

Enter an integer: 23
You entered 23

15

Java Programming Fundamentals

In the above example, we have created an object named input of the Scanner class.
We then call the nextInt () method of the Scanner class to get an integer input
from the user.

Similarly, we can use nextLong(), nextFloat(), nextDouble(), and
next () methods to get long, float, double, and string input respectively
from the user.

Example: Get float, double and String Input

import java.util.Scanner;

class Input {
public static void main(String[] args) {

Scanner input = new Scanner(System.in);

System.out.print("Enter float: "),
float myFloat = input.nextFloat();
System.out.println("Float entered = " + myFloat});

System.out.print("Enter double: ");
double myDouble = input.nextDouble();
System.out.println("Double entered = " + myDouble);

System.out.print("Enter text: ");
String myString = input.next();
System.out.println("Text entered = " + myString});

16

Java Programming Fundamentals

Output:

Enter float: 2.343
Float entered = 2.343
Enter double: -23.4
Double entered = -23.4
Enter text: Hey!

Text entered = Hey!

7- Java Strings

Strings are used for storing text.

A String variable contains a collection of characters surrounded by double quotes:

Example

Create a variable of type String and assign it a value:

String greeting = "Hello";

String Length

A String in Java is actually an object, which contain methods that can perform certain
operations on strings. For example, the length of a string can be found with the
length () method:

Example
String txt = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
System.out.println("The length of the txt string is: " + txt.length

More String Methods

There are many string methods available, for example toUpperCase() and
toLowerCase():

17

Java Programming Fundamentals

Example
5tring txt = "Hello World";:
System.out.println(txt.tolpperCase : J/ Outputs "HELLO WORLD"
System.out.println(txt.tolowerCase : J// Outputs "hello world"

Finding a Character in a String

The indexOf () method returns the index (the position) of the first occurrence of a
specified text in a string (including whitespace):

Example
5tring txt = "Please locate where 'locate' occurs!";
System.out.println(txt. index0f("locate")); // Outputs 7

String Concatenation

The + operator can be used between strings to combine them. This is called

concatenation:

Example
S5tring firstName = "John":
S5tring lastName = "Doe";
System.out.println(firstName + " " + lastMame

You can also use the concat () method to concatenate two strings:

Example
5tring firstName = "John "
5tring lastName = "Doe":

System.out.println(firstName.concat(lastName

18

Java Programming Fundamentals

Special Characters

Because strings must be written within quotes, Java will misunderstand this string,
and generate an error:

String txt = "We are the so-called "Vikings" from the
north.";

The solution to avoid this problem, is to use the backslash escape character.

The backslash (\) escape character turns special characters into string characters:

Escape character Result Description
\' ' Single quote
\" " Double guote
\\ \ Backslash

The sequence \" inserts a double quote in a string:

Example

String txt = "We are the so-called \"vikings\" from the
north.";

The sequence \' inserts a single quote in a string:

Example
String txt = "It\'s alright.";

he sequence \\ inserts a single backslash in a string:

Example
String txt = "The character \\ 1is called backslash.";

Adding Numbers and Strings
WARNING!

Java uses the + operator for both addition and concatenation.

19

Java Programming Fundamentals

Numbers are added. Strings are concatenated.

If you add two numbers, the result will be a number:

Example

int X = 10;

int y = 28;

ink 2= x + ¥y // z will be 30 (an integer/number)

if you add two strings, the result will be a string concatenation:

Example

=i

string x = "18
nt vy = 2B
string z = x + y; [/ z will be 1820 (a String)

8- Java Comments

Comments can be used to explain Java code, and to make it more readable. It can also
be used to prevent execution when testing alternative code.

Single-line comments start with two forward slashes (//).
Any text between // and the end of the line is ignored by Java (will not be executed).

This example uses a single-line comment before a line of code:

Example

// This is a comment
System.out.println("Hello World"

Java Multi-line Comments

Multi-line comments start with /* and ends with */.

20

Java Programming Fundamentals

Any text between /* and */ will be ignored by Java.

This example uses a multi-line comment (a comment block) to explain the code:

Example
/* The code below will print the words Hello World

to the screen, and it is amazing */

System.out.println("Hello World"

9- Java if, if...else Statement

The if Statement

Use the 1f statement to specify a block of Java code to be executed if a condition is
true.

Syntax

it (condition

block of code to be executed 7f the condition s true

Note that 1f is in lowercase letters. Uppercase letters (If or IF) will generate an error.

In the example below, we test two values to find out if 20 is greater than 18. If the
condition is true, print some text:

Example

if (20 > 18
System.out.println("20 is greater than 18

We can also test variables:

21

Java Programming Fundamentals

Example
int x = I8;
int v = 18;
a b0 i

System.out.println{"x is greater than y");

The else Statement

Use the else statement to specify a block of code to be executed if the condition is
false.

Syntax
it (condition)
/7 block of code to be executed if the condition is true
- else |

/7 block of code to be executed if the condition s false

Example
int time = 20;
if (time < 18) {
System.out.println("Good day.");
I else |
System.out.println("Good evening.");

// Outputs "Good evening."
The else if Statement

Use the else 1if statement to specify a new condition if the first condition is
false.

22

Java Programming Fundamentals

Syntax

if (conditionl
'/ block of code to be executed 7f conditionl is true

else if (condition2

'/ block of code to be executed 7f the conditionl 7s false and condition? is true

else

'/ block of code to be executed 7f the conditionl 7s false and condition? is false
Example

int time = 22;

if (time < 10
System.out.println("Good morning.
else if (time < 20
System.out.println("Good day.

else
System.out.println("Good evening.

J// Outputs "Good evening."

In the example above, time (22) is greater than 10, so the first condition is false.
The next condition, in the else 1if statement, is also false, so we move on to the
else condition since conditionl and condition2 is both false - and print to the

screen "Good evening".

However, if the time was 14, our program would print "Good day."

Short Hand If...Else (Ternary Operator)

There is also a short-hand if else, which is known as the ternary operator because it
consists of three operands. It can be used to replace multiple lines of code with a
single line. It is often used to replace simple if else statements:

23

Java Programming Fundamentals

Syntax
variable = (condition) ? expressionTrue
expressionfFalse;

Instead of writing:

Example

int time = 28;

if (time < 18
System.out.println{"Good day."

. else |
System.out.println{"Good evening."

You can simply write:
Example
int time = 20:

5tring result = (time < 18) ? "Good day." : "Good evening.";:
System.out.println(result):

10- Java For Loop

When you know exactly how many times you want to loop through a block of code,
use the for loop instead of a while loop:

Syntax

for (statement 1: statement 2; statement 3

/7 code block to be executed

24

Java Programming Fundamentals

Statement 1 is executed (one time) before the execution of the code block.
Statement 2 defines the condition for executing the code block.
Statement 3 is executed (every time) after the code block has been executed.

The example below will print the numbers 0 to 4:

Example

for (int 1 = 8; 1 <. 55 4+

System.out.println(i

Example explained
Statement 1 sets a variable before the loop starts (int i = 0).

Statement 2 defines the condition for the loop to run (i must be less than 5). If the
condition is true, the loop will start over again, if it is false, the loop will end.

Statement 3 increases a value (i++) each time the code block in the loop has been
executed.

Another Example

This example will only print even values between 0 and 10:

Example

for (int 1 = 0: i <=10; 1 =1 + 2
System.out.println(i

For-Each Loop

There is also a "for-each" loop, which is used exclusively to loop through elements in
an array:

Syntax

for (type variableName : arrayName

code y b

f= 7 o + o o =] eVl =T
QLOCK TOo De execured

25

Java Programming Fundamentals

The following example outputs all elements in the cars array, using a "for-each"
loop:

Example

5tring cars = {"Volvo", "BMW", "Ford", "Mazda"
for (String i : cars
System.out.println(i);

Output:

Volvo
BMW
Ford
Mazda

11- Java While Loop

The while loop loops through a block of code as long as a specified condition is
true:

Syntax

while (condition) |

vy e ol - 7 e 4 b= . g ol |
4 cade DLOCK TO De gxecured

In the example below, the code in the loop will run, over and over again, as long as a
variable (i) is less than 5:

26

Java Programming Fundamentals

Example
int i = 8;
while (i1 < 5
System.out.println(i
4,

Note: Do not forget to increase the variable used in the condition, otherwise the loop
will never end!

The Do/While Loop

The do/wh1ile loop is a variant of the while loop. This loop will execute the code
block once, before checking if the condition is true, then it will repeat the loop as
long as the condition is true.

Syntax
do

/S code block to be executed
while (condition):

The example below uses a do/while loop. The loop will always be executed at
least once, even if the condition is false, because the code block is executed before
the condition is tested:

Example

int i = 8;
do
System.out.println(i

1++3

while (i1 < 5

27

Java Programming Fundamentals

Do not forget to increase the variable used in the condition, otherwise the loop will
never end!

28

