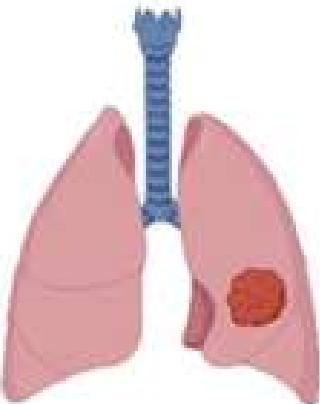


برعاية السيد عميد كلية الصيدلة
الأستاذ الدكتور سرمد هاشم الخطيب المحترم

تقيم جامعة بغداد/ كلية الصيدلة / وحدة الشؤون العلمية
الورشة/ المحاضرة/ الحلقة النقاشية الموسومة

Protein Kinase Inhibitors in the Treatment of Lung Cancer

Akram H. kareem


PhD Candidate – Clinical Pharmacy, Baghdad University

Introduction

- 1) Lung cancer remains the leading cause of **cancer-related mortality** worldwide
- 2) non-small cell lung cancer (NSCLC) accounting for approximately **85 % of all** cases .
- ,3) chemotherapy which offered **limited survival benefits** and **significant toxicity**.
- 4) discovery of oncogenic driver mutations **(PK)**

Lung Cancer (LC)

SUB-TYPE

ORIGIN

Small-cell
Lung Cancer
SCLC
(~15%)

Non-small cell
Lung Cancer
NSCLC
(~85%)

Lung
Adenocarcinoma
LUAD

Lung
Squamous-cell
Carcinoma
LUSC

Large-cell
Carcinoma
LCC

Neuroendocrine
cell

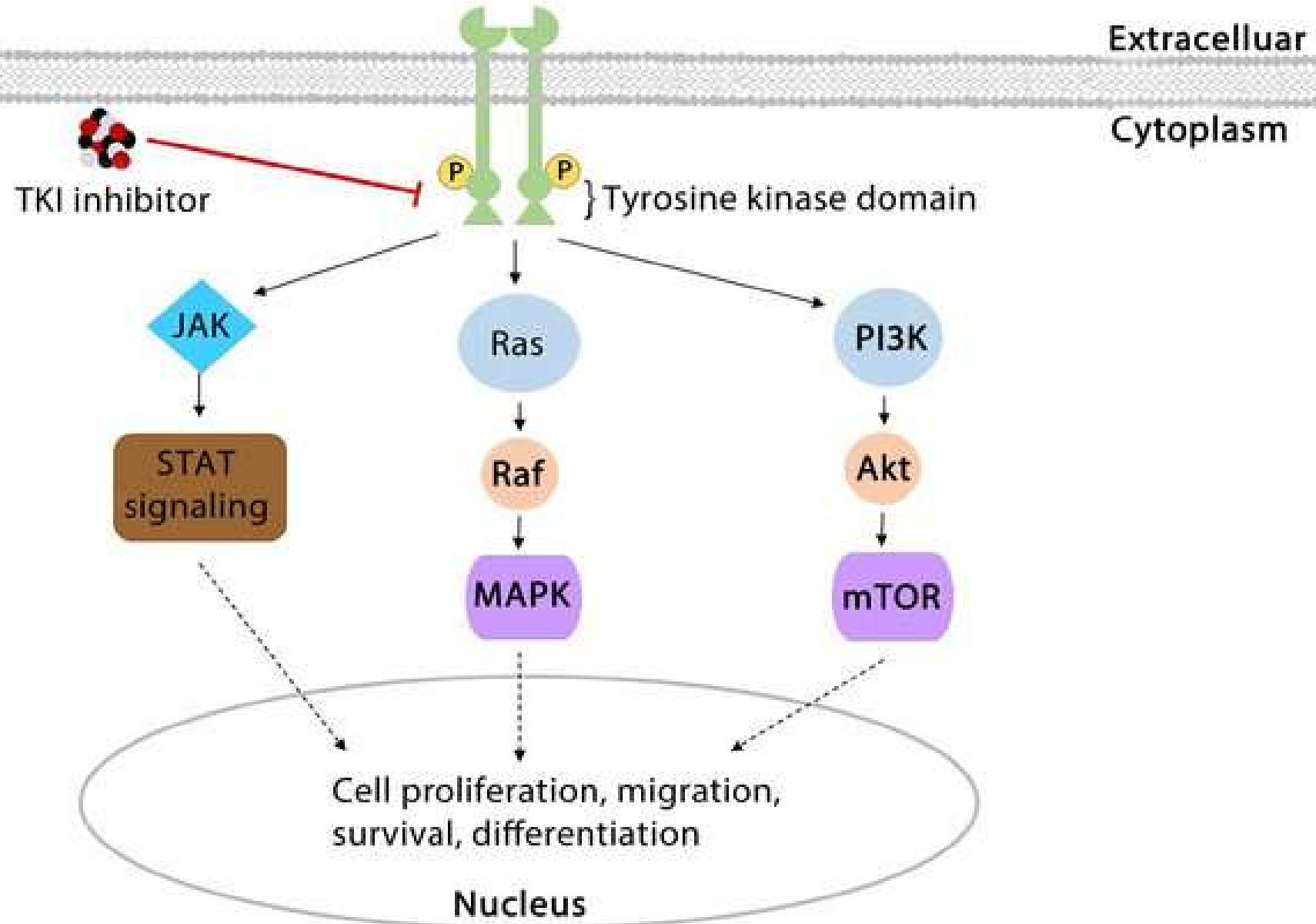
Alveolar type II
Epithelial Cell

Basal
Epithelial Cell

Various
Epithelial Cells

we will focus on four key concepts:

- 1)What are **protein kinases**?
- 2)Why are **protein kinases** critically important in lung cancer?
- 3)What exactly are **protein kinase inhibitors** and how do they work?
- 4)What is the **clinical evidence** and recent updates on **PKIs** in the treatment of NSCLC?

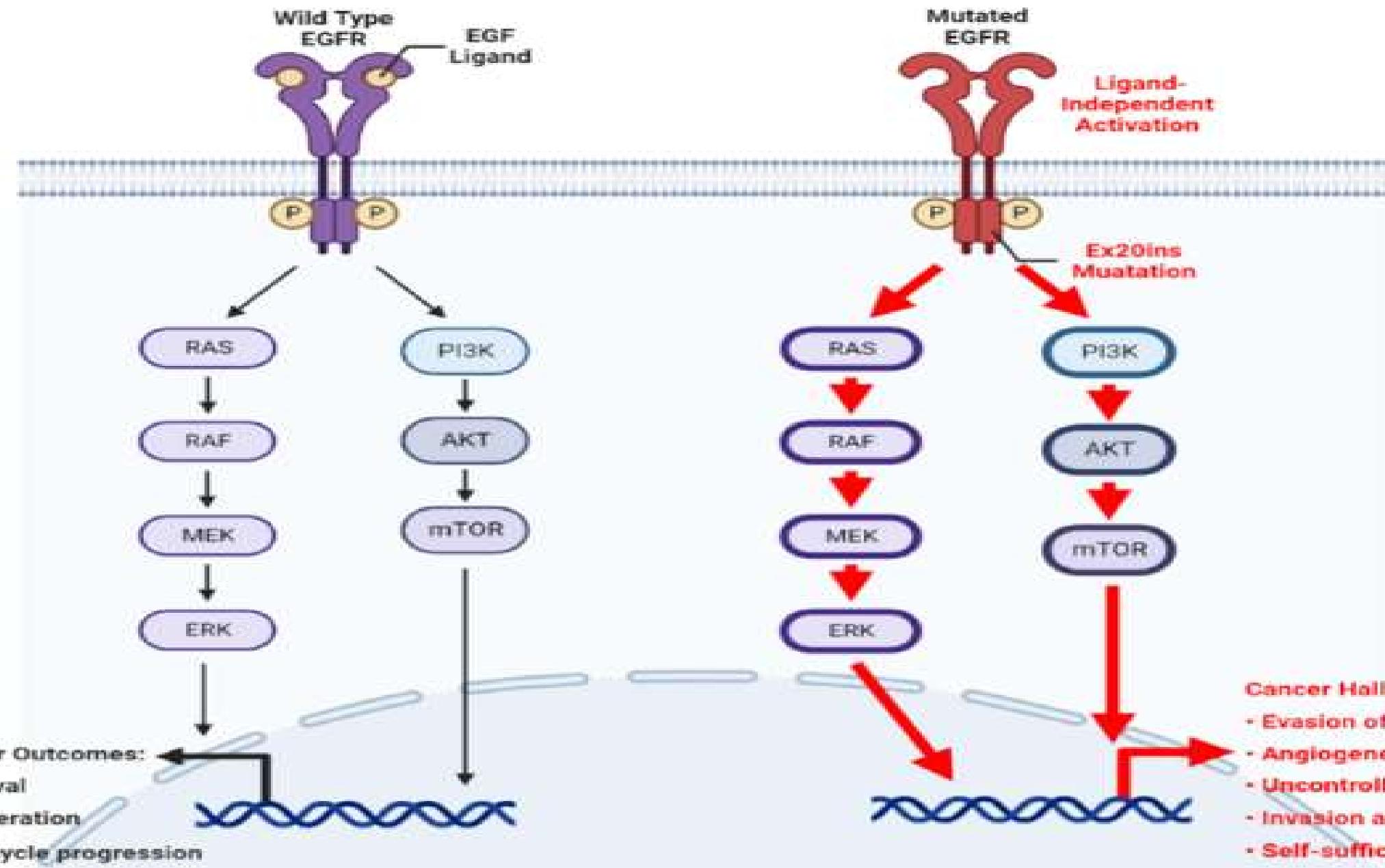

What Are Protein Kinases

- **Protein kinases** are enzymes that play a central role in regulating cellular activities.
- These enzymes add phosphate groups to proteins (**phosphorylation**), which affects the protein's function, such as **cell growth, survival, and division**.

- In normal cells, this process is tightly regulated, but in cancer cells, **mutations** in certain kinases lead to continuous activation of these pathways, causing uncontrolled **cell growth** and **survival**.

Among all protein kinases implicated in NSCLC, **EGFR is the most clinically significant**. When mutated, **EGFR activates several major downstream pathways**:

- **RAS–RAF–MAPK pathway** → promotes **uncontrolled proliferation**
- **PI3K–AKT–mTOR pathway** → enhances **survival, anti-apoptosis**
- **JAK–STAT pathway** → contributes to **tumor progression and immune evasion**

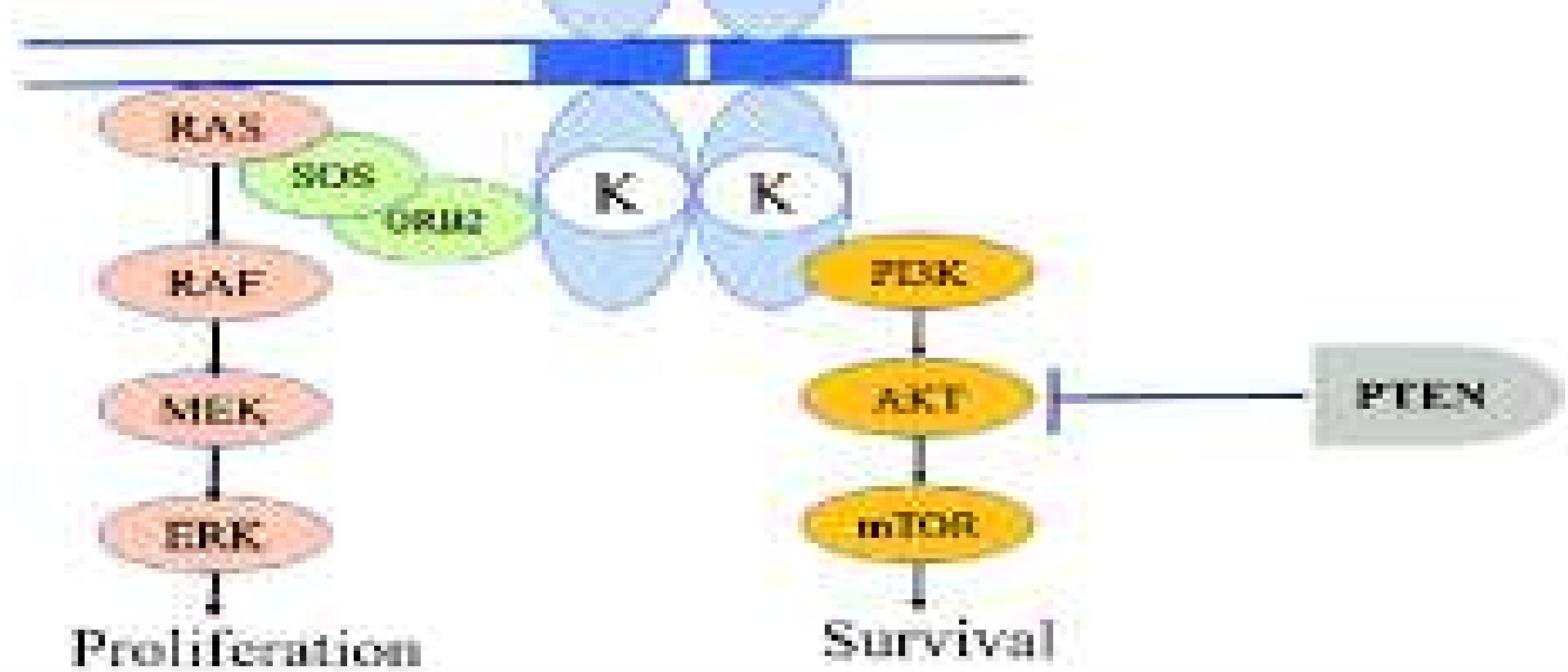


Why Are Protein Kinases Important in Lung Cancer

- In NSCLC, mutations or rearrangements in genes encoding protein kinases—such as EGFR, ALK, and ROS1—lead to continuous activation of downstream signaling pathways like PI3K/AKT and MAPK.
- Tumor cells become highly dependent on these signaling pathways, a concept known **as oncogenic addiction**.

Oncogenic addiction

*Cancer cells rely on a **single dominant oncogenic pathway** for survival and proliferation.*


Cancer Hallmarks:

- Evasion of apoptosis
- Angiogenesis
- Uncontrolled growth
- Invasion and metastasis
- Self-sufficiency

In NSCLC, mutations in EGFR, ALK, ROS1, and other genes lead to **overactive kinase signaling**, which drives the **cancerous behavior of these cells**. This is why targeting kinases has become a focal point of cancer treatment, particularly in **NSCLC**.

Growth factor

Receptor tyrosine kinase

Why Are Protein Kinases So Important in Lung Cancer

- 1) their role in **tumor progression**. For example, **EGFR mutations** are found in a significant number of NSCLC patients. These mutations make the tumor cells rely on the EGFR signaling pathway for **survival and growth**.
- 2) The continuous activation of such signaling pathways can be blocked by **protein kinase inhibitors**, offering a much more **targeted** treatment option than **traditional chemotherapy**.

3) By targeting these abnormal kinases, PKIs stop tumor growth, improve **progression-free survival (PFS)**, and have **fewer side effects compared** to chemotherapy.

What Are Protein Kinase Inhibitors

Protein kinase inhibitors (PKIs) are a class of drugs designed to block the **action of specific kinases involved in cancer cell growth**. These inhibitors bind to the ATP-binding site of the kinase, preventing it from being activated and stopping **the signal that drives the cancer's growth**.

There are different generations of PKIs used in NSCLC

- **First-generation** PKIs like **Gefitinib** and **Erlotinib** target EGFR mutations.
- **Second-generation** PKIs like **Afatinib** target multiple EGFR mutations and are more potent.
- **Third-generation** PKIs like **Osimertinib** are more effective at overcoming resistance mutations (like **T790M**) and have better efficacy against **brain metastases**.

- Major Driver Mutations in NSCLC

1. EGFR Mutations (30–40%)

- Exon 19 deletion (~60%)
- L858R point mutation (~30%)
- These mutations keep the EGFR receptor **permanently activated**, continuously triggering downstream oncogenic pathways such as MAPK, PI3K, and JAK–STAT.
- → **Patients with these mutations show the highest sensitivity to EGFR-TKIs**, particularly **osimertinib and lazertinib**

2. ALK Rearrangements (5–7%)

- Younger age
- Non-smokers
- High incidence of CNS metastasis
- Effective therapies include:
 - **Alectinib**
 - **Brigatinib**
 - **Lorlatinib**

3. ROS1 Rearrangements (1-2%)

Highly responsive to:

. **Crizotinib**

Entrectinib

Clinical Studies and Updates

- Recent clinical trials have established targeted therapy as first-line treatment
- Focus on efficacy, resistance, and CNS control
- Treatment decisions guided by NCCN and ESMO guidelines

- **Osimertinib: First-Line Standard of Care**
- Superior efficacy compared with earlier EGFR-TKIs
- Excellent CNS penetration
- Improved safety profile
- Recommended by **NCCN** and **ESMO** guidelines

why **Osimertinib** Is Preferred **First-Line**

- High activity in common **EGFR mutations** (Ex19del, L858R)
- Effective **against T790M** resistance mutation
- Lower rates of **severe rash** and **diarrhea**
- Suitable for **elderly** and **comorbid patients**

When Osimertinib Alone May Not Be Enough

- Co-mutations: TP53, RB1, PIK3CA
- Bulky disease or high tumor burden
- Rapid early progression
- High risk of CNS metastases

- **The Emerging First-Line Option: Amivantamab + Lazertinib**
- Dual targeted therapy approach
- Combines antibody and EGFR-TKI
- Designed to delay resistance

the MARIPOSA Trial

- Phase III, first-line EGFR-mutated NSCLC
- **Amivantamab** (EGFR–MET bispecific antibody)
- **Lazertinib** (next-generation EGFR-TKI)
- Compared with **osimertinib**

MARIPOSA Trial: Key Results

- Superior **PFS** vs **osimertinib** alone
- Better suppression of MET-driven resistance
- Strong and **durable CNS** responses
- Benefit in **TP53/RB1 co-mutated** tumors

Expanding Targeted Options in NSCLC

- MET exon 14 skipping: **Capmatinib**
- RET fusions: **Selpercatinib**
- ROS1 rearrangements: **Crizotinib, Entrectinib**

Lazertinib: Key Characteristics

- High **selectivity** for mutant EGFR
- Active against Ex19del, L858R, and T790M
- **Excellent CNS penetration**
- Lazertinib: Lower rates of skin rash
- Reduced diarrhea
- Less **mucositis** compared with older TKIs

Clinical Considerations for PKI–ICI Use

- EGFR/ALK-positive tumors → **PKIs first**
- ICIs considered after **TKI failure**
- Avoid concurrent use due **to toxicity**

To summarize,

protein kinases are central to the development and progression of **NSCLC**.

By understanding and targeting these pathways with **PKIs**, we have made great strides in treating this disease.

References

- Wolf J, Seto T, Han J-Y, et al. Capmatinib for MET exon 14 skipping NSCLC. *N Engl J Med.* 2020.
- Drilon A, Oxnard GR, Tan DSW, et al. Selpercatinib in RET fusion–positive lung cancer. *N Engl J Med.* 2020.
- Solomon BJ, Besse B, Bauer TM, et al. Entrectinib and larotrectinib for NTRK fusion-positive lung cancer. *Lancet Oncol.* 2020.
- Tan DSW, Yom SS, Tsao MS, et al. Uncommon EGFR mutations: clinical outcomes with TKIs. *J Clin Oncol.* 2021.
- Zhou C, Ramalingam SS, Kim TM, et al. Patritumab deruxtecan (HER3-DXd) in EGFR-TKI–resistant NSCLC. *J Clin Oncol.* 2022.
- Papadimitrakopoulou V, Mok TSK, Peters S, et al. BLU-945 and BLU-701: next-generation EGFR inhibitors targeting C797S. *Ann Oncol.* 2023.

- Ramalingam SS, Vansteenkiste J, Planchard D, et al. Overall survival with osimertinib in EGFR-mutated advanced NSCLC. *N Engl J Med.* 2020;382(1):41–50.
- Park K, Haura EB, Leighl NB, et al. First-line Amivantamab plus Lazertinib versus Osimertinib for EGFR-mutated NSCLC (MARIPOSA). *J Clin Oncol.* 2024.
- Mok TSK, Nakagawa K, Tan DS-W, et al. Amivantamab with Lazertinib after Osimertinib failure in EGFR-mutated NSCLC (CHRYSLIS-2). *Lancet Oncol.* 2023.