

Introduction to 3Dprinted Scaffolds in Periodontal Defects

3D-printed scaffolds are revolutionizing the treatment of periodontal defects, offering a tailored and precise approach to tissue regeneration.

Cell Transplantation

Signal molecules

Cell-Cell interactions

Cell-Matrix interactions

Scaffold

Three-dimensional printing technologies. (A) Inkjet printing. (B) Laser printing. (C) Extrusion printing.

SCAFFOLD-BASED 3D CELL CULTURES

- Facilitate oxygen, nutrient, and waste transportation due to their porosity.
- Maturing cells interact with one another and eventually form structures that are similar to origin tissue.
- Aggregates are presented as heterogeneous-sized spheres

HYDROGEL SCAFFOLDS

- Mimic ECM
- Contain water and natural biomolecules such as alginate, gelatin, hyaluronic acid, agarose, laminin, collagen, or fibrin
- -Difficult gelling mechanism

POLYMERIC HARD MATERIAL-BASED SCAFFOLDS

 Cells are cultivated in presence of fibers or sponge-like structures

- Materials used for can be Polystyrene or Polycaprolactone

- Made of two or more distinctly different materials

Current Evidence and Limitations

Advancements

New studies provide insights into the effectiveness of 3D-printed scaffolds in periodontal defect treatment.

Challenges

Limited long-term data poses challenges in fully assessing the outcomes and potential risks.

Animal Model Studies on Periodontal Defects

2

Efficacy

Animal model studies reveal promising outcomes in tissue regeneration and scaffold integration.

Biocompatibility

The biocompatibility of 3D-printed scaffolds is demonstrated through animal model research.

Study	3D scaffold manufacturing method/material/ characterization	Animal model/ number of animals/number of defects	Defect type/size/ location	Presence of biomolecules and/ or cells	Interventions	Length of follow-up (weeks)	Outcomes
Park <i>et al.,</i> 2012 ^[20]	CAD-based wax molds printing PCL Ligament architecture: 0.225 mm diameter, 0.250 mm ligament interface and 0.175 mm interconnective space to the bone region Bone region: 0.500 mm diameter gel-loading inlet and 0.60-0.50 mm ² window pores to contact residual bone tissue	48 athymic nude rats (48 defects)	Periodontal fenestration defects were surgically created on the buccal side of the mandible, exposing the distal root surface of the first molar (3 mm ² x 2 mm ²)	In random-porous scaffolds: 2.4×10 ⁵ hPDL cells/ scaffold or 2.4×10 ⁵ Ad-BMP-7-hPDL cells/scaffold In fiber-guiding scaffolds: 0.4×10 ⁵ hPDL in the PDL interface and 0.6×10 ⁵ hPDL in the bone region; or 0.4×10 ⁵ hPDLs and 0.6×10 ⁵ Ad-BMP-7-hPDLs both in the PDL interface and in the bone region	Group 1: Random-porous scaffolds + hPDL (<i>n</i> =6/time point) Group 2: Fiber-guiding scaffolds + hPDL (<i>n</i> =6/time point) Group 3: Random-porous scaffolds + Ad-BMP-7-hPDL (<i>n</i> =6/time point) Group 4: Fiber-guiding scaffolds + hPDL (ligament interface) + Ad-BMP-7-hPDL (bone region) (<i>n</i> =6/time point)	3 and 6	Mineralized tissue formation Defects treated with fiber- scaffolds (Groups 2 and 4 amounts of total mineraliz defects treated with rando scaffolds (Groups 1 and 3 Only defects treated with scaffolds had cementum- deposited over the dentin Functional PDL formation Only fiber-guiding scaffold formation with an orientat the mineralized tissue
Park <i>et al.,</i> 2014 ^[21]	CAD-based wax molds printing PCL Ligament architecture: 0.225 mm diameter, 0.250 mm ligament interface, and 0.175 mm interconnective space to the bone region Bone region: 0.500 mm diameter gel-loading inlet and 0.60-0.50 mm ² window pores to contact residual bone tissue	48 athymic nude rats (48 defects)	Periodontal fenestration defects were surgically created on the buccal side of the mandible, exposing the distal root surface of the first molar (3 mm ² ×2 mm ²)	2.4×10 ⁵ hPDL cells/ scaffold	Control: Amorphous PCL scaffolds without hPDL (<i>n</i> =12/ time point) Test: Fiber-guiding scaffolds seeded with hPDL (<i>n</i> =12/time point)	3 and 6	Micro-CT Defects treated with fiber- scaffolds containing hPDI mineralized tissues at 3-a Histology In the amorphous scaffold formed fibrous tissue had orientation and failed to a root surface. In the fiber-g group, the construct guide alignment. Newly formed connected obliquely/perpo- the root surface
Pilipchuk e <i>t al.</i> , 2018 ^[22]	CAD based PDMS molds printing PCL (bone region)/ PLGA + PCL (PDL region)	Athymic male rats (83 defects) number of animals not reported	Periodontal fenestration defects were surgically created unilaterally on the buccal side of the mandible, exposing the distal root surface of the first molar (wide×height=3 mm×2 mm)	AdPDGF-BB on the PDL compartment and AdBMP-7 on the bone compartment	Negative control: Amorphous PDL area and bone area (<i>n</i> =10/3 weeks; <i>n</i> =6/6 weeks; n=5/9 weeks) Pattern + empty: Patterned PDL area and bone area (<i>n</i> =6/3 weeks; <i>n</i> =6/6 weeks)	3, 6, and 9	Mineralized tissue formation At 3 weeks, greater bone very observed for all groups with relative to the control group differences between the ge groups. The percentage of fill was greater in pattern + amorphous + dual groups t group

Downloaded from by BhDM5ePHKbH4TT1hpm1ArAnpMG160E1gtdlLYrLSR28Y04h9V6794

T-LL 4 OL mentariation of the included studie

-guiding 4) had greater zed tissue than om-porous fiber-guiding like tissue

ds guided PDL tion oblique to

r-guiding L formed more and 6-week

d group, newly a parallel ttach to the guiding scaffold ed PDL fiber PDL fibers endicularly to

Figueiredo, et al.: 3D-printed scatfolds for periodontal regeneration

n olume was h gene delivery , without ne delivery bone defect single and han in control

Contd...

Study	3D scaffold manufacturing method/material/ characterization	Animal model/ number of animals/number of defects	Defect type/size/ location	Presence of biomolecules and/ or cells	Interventions	Length of follow-up (weeks)	Outcomes
	PDL region: Micropatterned pillars with height of 100 µm and interpillar distance of 150 µm (pillar lengthwide=150 µm × 150 µm and grooves wide × deep=15 µm × 30 µm), connected to a 150 µm base Bone region: A porous, amorphous and 250 µm thick scaffold Total scaffold thickness=0.5 mm			On the PDL region: 5×10 ⁵ hPDLs (except the single-gene delivery group, in which hGFs were seeded onto patterned AdPDGF-BB-coated PDL region) On the bone region: 5×10 ⁵ hGFs	Pattern + single: AdBMP-7 immobilized patterned PDL area and AdBMP-7 immobilized bone area (with hGF cells in both regions) (<i>n</i> =6/3 weeks; <i>n</i> =6/6 weeks) Amorphous + dual: AdPDGF-BB immobilized, amorphous PDL area and AdBMP-7 immobilized bone area (<i>n</i> =6/3 weeks; <i>n</i> =6/6 weeks; n=5/9 weeks) Pattern + dual: AdPDGF-BB immobilized, patterned PDL area and AdBMP-7 immobilized bone area (<i>n</i> =10/3 weeks; <i>n</i> =6/6 weeks; <i>n</i> =5/9 weeks)		At 6 weeks, all groups exce control group demonstrated complete bone fill. Greater of bone fill was found in the and pattern + dual groups of the negative control group PDL formation Only soft tissues of pattern aligned obliquely to the roo were more likely to organiz PDL Nanoindentation The stiffness of the regene from the pattern + dual grou indistinguishable from that tissues both at 3 and 9 wee contrast, the tissues formed group were less stiff than n
Lian <i>et al.</i> , 2020 ^[23]	CAD electrospinning writing Bilayered: PLGA and gelatin gel composite with or wihout Cu-loaded MSNs Average fiber diameter of 10.2±0.5 µm, fiber spacings of 400 µm and lay-down patterns of 0°-90° Scaffold dimensions not mentioned	24 sprague dawley rats (24 defects)	Periodontal vertical defects were surgically created on the palatal aspect of the maxillary first molars (length × wide × deep= 3 mm × 1 mm × 2 mm)	Cu ions	Control: No treatment (<i>n</i> =6) PLGA/gelatin composite scaffolds (<i>n</i> =6) PLGA/gelatin composite-MSNs scaffolds (<i>n</i> =6) PLGA/gelatin composite-Cu@ MSNs scaffolds (<i>n</i> =6)	12	Micro-CT Cu @ MSNs-PLGA/gelatin s sites presented reduced Cl distance, increased new bo and bone mineral Histological examination While control group defects filled with fibrous connectiv MSNs- PLGA/gelatin scaffo complete periodontal regen
Daghrery <i>et al.</i> , 2021 ^[24]	CAD electrospinning writing PCL with or without F/CaP-coating 8 mm ² × 8 mm ² , 0.45 mm thick and 500 µm strand spacing	12 Fischer 344 rats (24 defects)	Periodontal fenestration defects (3 mm × 2 mm × 1 mm) were surgically created bilaterally on the mandible exposing the distal root of the first molar and the mesial root of the second molar	F/CaP ions	Control: No treatment (<i>n</i> =4/time point) PCL scaffolds (<i>n</i> =4/time point) F/CaP-coated PCL scaffolds (<i>n</i> =4/time point)	3 and 6	Micro-CT At 3 and 6 weeks, bone volu fill, and tissue mineral densit significantly higher in F/CaP- scaffolds compared to the ot At 6 weeks, near complete b was found in F/CaP-coated s treated sites Histology

455

except for the ated nearly ther percentage the amor + dual ps compared to

terned groups root surface and anize like native

enerated tissues group were hat of native weeks. In med in the control an native bone

tin scaffold treated d CEJ-ABC v bone volume

ects were mainly ctive tissue, Cu@ affolds promoted generation

olume, bone nsity were aP-coated e other groups. te bone coverage ed scaffold 3D-printed scaffolds for periodontal regeneration

Figueiredo,

et al .:

Contd...

Study	3D scaffold manufacturing method/material/ characterization	Animal model/ number of animals/number of defects	Defect type/size/ location	Presence of biomolecules and/ or cells	Interventions	Length of follow-up (weeks)	Outcomes
He <i>et al.</i> , 2022 ^[25]	CAD based printing BCG	Female beagle dogs Total number of animals and defects not reported	One-wall intrabony defects (wide × length=5 cm × 4 cm) were surgically created at the distal site of the mandibular second premolar and the mesial site of the mandibular fourth premolar	Moions	Control: No treatment (<i>n</i> =5) BCG scaffolds (<i>n</i> =5) Mo-BCG scaffolds (<i>n</i> =5)	8	F/CaP-coated sc regeneration of n cementum, and F weeks postimplan postimplantation, treated sites had organized period sites treated with Micro-CT Larger amounts of in defects treated with newly forme zone Histology The newly forme functional PDL at cementum were treated Mo-BGC

Cu – Copper; Mo – Molybdenum; ABC – Alveolar bone crest; BMP – Bone morphogenetic protein; AdBMP-7 – Adenovirus-encoding BMP-7: AdPDGF-BB – Adenovirus-encoding platelet-derived growth factor subunit B; BGC – Bioactive glass ceramic; CAD – Computer-aided design; CEJ – Distance between cement enamel junction; F/CaP – Fluorinated calcium phosphate; hGF – Primary human gingival fibroblasts; hPDL – Primary human PDL cells; MSN – Mesoporous silica nanoparticle; PCL – Poly-ε-caprolactone; PDL – Periodontal ligament; PDMS – Polydimethylsiloxane; PLGA – Poly (lactic-co-glycolic acid); hPDLs – Human PDL cells; CT – Computed tomography; BCG: Bacillus Calmette–Guérin; *n* – Sample size

Table 1: Contd

caffolds led to the new alveolar bone, PDL as early as 3 antation. At 6 weeks h, F/CaP-coated scaffold d a more robust and dontium compared to h noncoated scaffolds

of new bone were found d with Mo-BGC scaffolds, ed PDL in the radiolucent

ed alveolar bone, and newly formed found only in defects c scaffolds Figueiredo, et al.: 3D-printed scaffolds for periodontal regeneration

Results

• At 3 weeks, all groups showed greater bone volume compared to the control group, with no differences between the groups.

• The pattern + single and amorphous + dual groups exhibited a higher percentage of bone defect fill than the control group.

• By 6 weeks, all groups except the control group demonstrated nearly complete bone fill, with the pattern + dual and amorphous + dual groups showing a greater percentage of bone fill compared to the negative control group.

Clinical Implications and Potential Applications

Medical Use

()

3D-printed scaffolds have potential applications in various periodontal treatments and surgeries.

Dentistry

These scaffolds may revolutionize dental implant procedures and periodontal surgeries.

Future Research Directions

Material Development

Further research aims to enhance scaffold materials for improved biocompatibility and degradation properties.

Clinical Trials

2

3

Future studies seek to conduct large-scale clinical trials to assess the scaffolds' effectiveness in humans.

Regulatory Approval

Research will focus on obtaining regulatory approvals and standardization for clinical use.

Conclusion and Key Findings

Significant Progress

The research demonstrates significant progress in 3D-printed scaffold technology for periodontal defects.

3

1

Challenges Addressed

Key findings address the challenges and limitations identified in the current evidence.

Promising Prospects

The study offers promising prospects for the future of periodontal defect treatments.

