Managing Soil Salinity and Sodicity: A Biological Perspective

M.S. Coyne, Professor of Soil Microbiology

Department of Plant and Soil Sciences, University of Kentucky

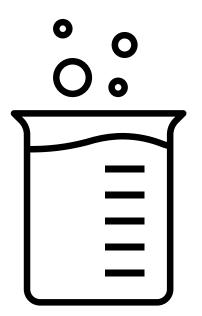
Presentation to the University of Baghdad 23 March 2024

We Do Not Have Salinity and Sodicity Problems in Kentucky

Human Error Human Activity - Oil Drilling Wastewater Natural Events - Saline Seeps

3/26/2024

Outline of Presentation


- Review (things you already know)

 A. What are saline soils?
 B. What are sodic soils?
 C. Where and why do they occur?
 D. Why are they bad for plants and soil biology?
 E. What are the mitigation strategies?
- How do you manage the biological environment?
 A. Structure
 B. Microbos
 - B. Microbes

Chemical Degradation

- Salinization
- Sodification
- Alkalinization
- Acidification
- Nutrient Depletion
- Nutrient Excess
- Agrichemicals
- Industrial Contamination

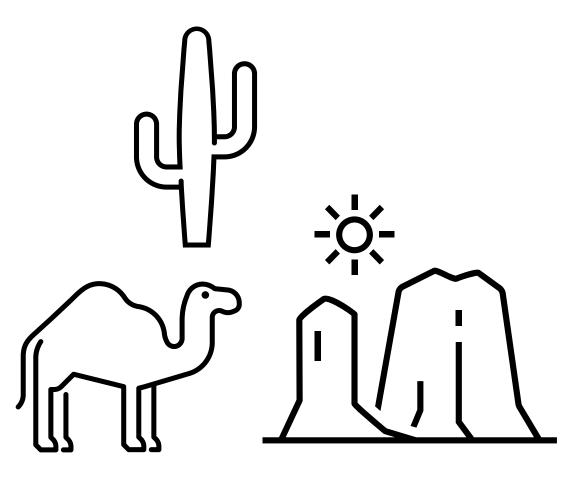
Directly Affects Plant Growth

Indirectly Affects Growth by Influencing Soil Biological and Physical Properties

Acidity/Alkalinity

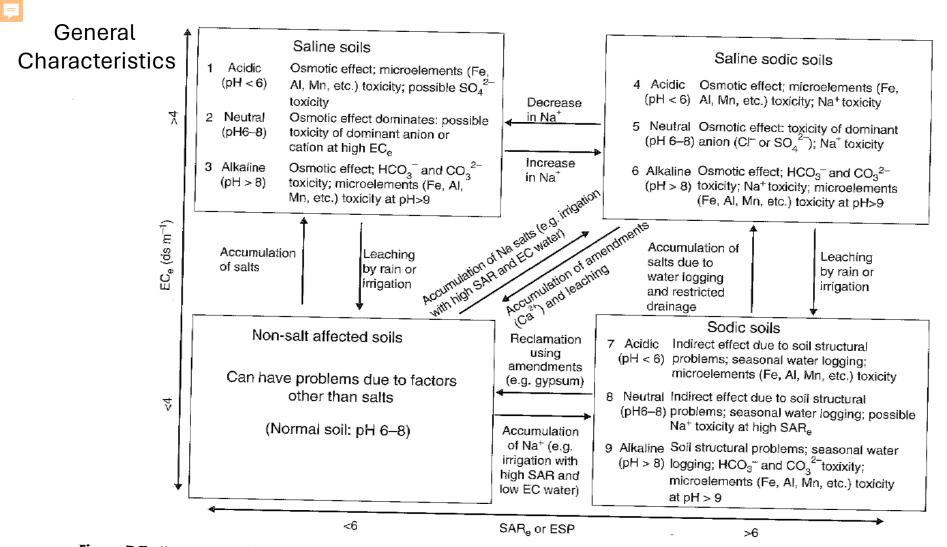
ultra acid < 3.5 extremely acid 3.5 to 4.4 very strongly acid 4.5 to 5.0 strongly acid 5.1 to 5.5 moderately acid 5.6 to 6.0 slightly acid 6.1 to 6.5 Neutral 6.6 to 7.3 slightly alkaline 7.4 to 7.8 moderately alkaline 7.9 to 8.4 strongly alkaline 8.5 to 9.0 very strongly alkaline > 9.1

Affects Nutrient Availability (P/Fe), Nutrient Toxicity (Al/Mn/Mo), Plant Growth


Individual Microbes Have pH Minimum and Maximum

Salt- and Sodium-Affected Soils Are in:

- Arid regions
- Irrigated regions with high water tables
- Irrigated regions with poor water quality
- Saline seeps after fallow


Table 2. Salt classifications in soils (NRCS).

Characterization	EC†	ESP‡	SAR _e §	pH#
Normal	<4	<15	<12	<8.5
Salino	>4	<15	<12	<8.5
Sodic	<4	>15	>12	>8.5
Saline-Sodic	>4	>15	>12	>8.5

[†] EC, electrical conductivity, dS m⁻¹.

- ‡ ESP, exchangeable sodium percentage.
- § SAR, sodium adsorption ratio determined from a saturated paste extract.
- # pH, term describing the concentration of hydrogen.

Figure 7.7 Key properties of the major types of salt-affected soils and possible mechanisms of impact on plant growth. Soils are categorised absorption ration (SAR) and electrical conductivity (ECe) measured in soil saturation extracts and pH1:5 measured in soil:water suspension. The (SARe \approx ESP) of 6 and above to classify a soil as sodic is based on the Australian soil classification criteria (Isbell, 1996); however, the general are of relevance worldwide. Toxicity, deficiency or ion-imbalance due to other elements (e.g. B, K, N, P) will depend on the ionic composition or and the particular species of plant.

Salinity – Too Much Salt!

Salinity – EC

Measured by Electrical Conductivity (EC, dS m⁻¹)

EC = electrical conductance of a saturated paste solution Salts with solubility greater than that of gypsum (a less soluble salt)

Salic (saline) soil: EC > 30 dS m⁻¹

The upper EC limit for drinking water is 1.6 dS m⁻¹ (1 dS m⁻¹ = 1 mmho cm⁻¹)

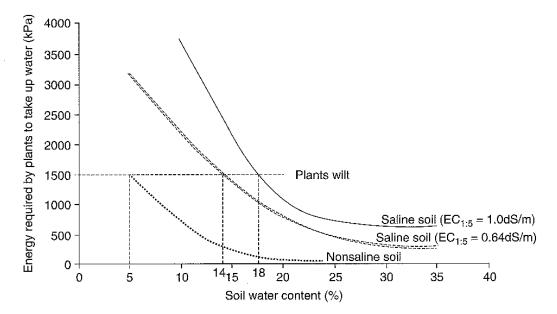
_					
	Compound	Common name	Molecular formula	Solubility (20°C)	
				g L-1	
	Calcium carbonate	lime	CaCO ₃	0.06†	
	Magnesium carbonate		MgCO ₃	2.51‡	
	Sodium carbonate	soda	Na ₂ CO ₃	179	
	Sodium bicarbonate	baking soda	NaHCO ₃	87	
	Calcium sulfate	gypsum	CaSO₄	1.9	
	Magnesium sulfate	epsom	MgSO₄	252	
	Sodium sulfate	glauber's salt	Na₂SO₄	161	
	Magnesium chloride		MgCl _z	410	
	Sodium chloride	table salt	NaCl	264	
	Calcium chloride		CaCl ₂	427	

Table 1. Common soluble salts found in soils (FAO, 1973).

† Solubility of CaCO₃ in 0.00032 atm of CO₂.

\$ Solubility of MgCO, in 0.005 atm of CO, at 18°C.

Table 3. Salinity classes of soils (NRCS).


Classes	Electrical conductivity
	dS m-1
Nonsaline	0-2
Very slightly saline	≥2-4
Slightly saline	≥4-8
Moderately saline	≥8-16
Strongly saline	≥16

Salinity and Plant Damage

- Due to the lower osmotic potential in saline soils, plants commonly exhibit **water stress symptoms**: wilting, stunting with cupped leaves, browning and brittle leaf tips and margins, and potentially become deep bluegreen from excessive wax accumulation.
- Reduced P, K, or essential ions due to high Ca concentrations.
- Reduced K and Ca uptake because of high Na concentrations.
- Reduced nitrate-nitrogen uptake due to excess sulfate and chloride.
- The toxic effects of excess levels of Na and Cl on plants include leaf-tip burn, scorching of the leaf margin, chlorosis, and premature leaf drop.

Wilting Occurs Sooner With Higher Salt (EC) Content in Soil Water – Salt Decreases Water Potential (ψ)

Figure 7.8 Energy (equivalent to soil matric plus osmotic potential) required by plants to take up water from a loamy soil as influenced by EC1:5 and % soil-water content.

Note: 1500 kPa = 1.5 Mpa = 15 Atm

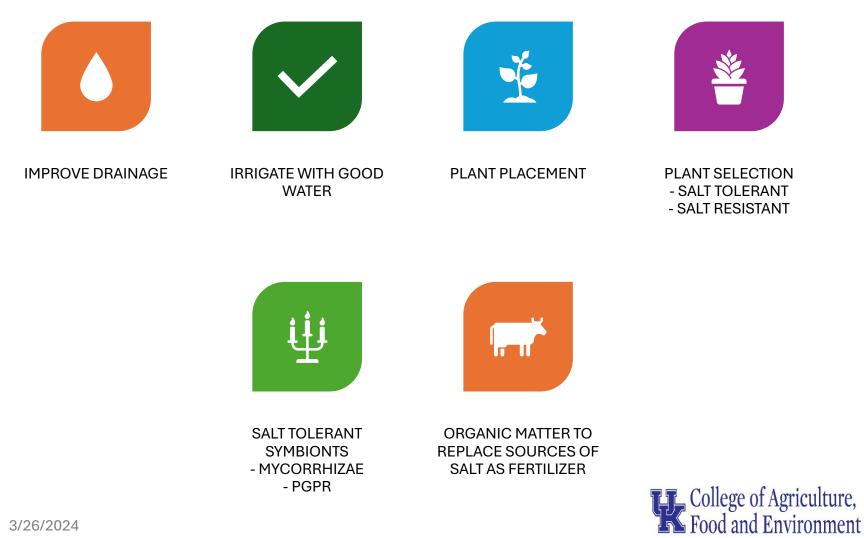
Soil Conditions and Plant Growth. Edited by Peter J. Gregory and Stephen Nortcliff. © 2013 Blackwell Publishing Ltd. Published 2013 by Blackwell Publishing Ltd.

3/26/2024

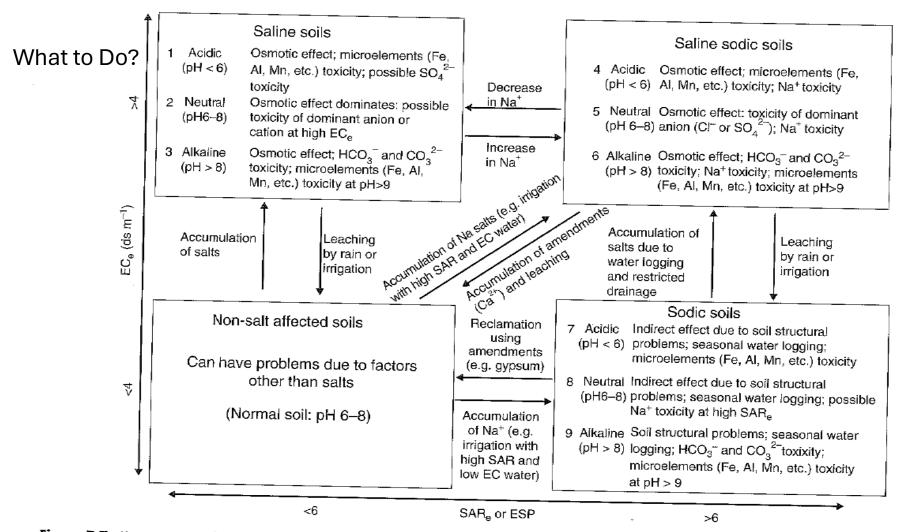
Soil Microbes and Salinity

Microbes vary from being very sensitive to low osmotic potential to very resistant

Gram negative bacteria are sensitive


Fungi and Gram positive bacteria are more resistant

Halophiles grow in environments that are incredibly salty


Increasing salinity decreases the diversity of microbes in the soil and selects for resistant organisms

Solutions to Salinity

Plant and Soil Sciences

Figure 7.7 Key properties of the major types of salt-affected soils and possible mechanisms of impact on plant growth. Soils are categorised absorption ration (SAR) and electrical conductivity (ECe) measured in soil saturation extracts and pH1:5 measured in soil:water suspension. The (SAR \approx ESP) of 6 and above to classify a soil as sodic is based on the Australian soil classification criteria (Isbell, 1996); however, the general are of relevance worldwide. Toxicity, deficiency or ion-imbalance due to other elements (e.g. B, K, N, P) will depend on the ionic composition of and the particular species of plant.

What is a Sodic Soil and Why Does it Matter?

• Sodic soils have excess Na on the soil's exchange sites. The dominant cations on the soil exchange sites are typically Ca⁺², Mg⁺², and K⁺. As the concentration of Na⁺ increases in soil, Na⁺ replaces other cations on the soil exchange sites by mass action.

• The result can be slaking, swelling, and clay dispersion of soil particles upon wetting.

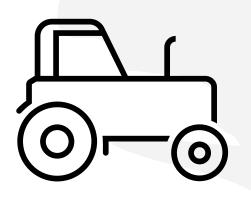
• **Slaking** is the breakdown of soil aggregates into particles >20 um in size.

• **Dispersion** is the breakdown of fine soil particles to <2 um in size.

• The NRCS classifies soils as sodic if the SARe is >12, the ESP is >15, the EC is <4.0 dS $m^{\text{-1}}$, and the pH is >8.5

3/26/2024

Sodicity – SAR & ESP


 SAR = sodium adsorption ratio = Na/√(1/2[Ca+Mg])

all expressed in meq/L, in a saturated paste extract

 ESP = exchangeable sodium percentage = 100(Na_{ex}/CEC) all in meq/100 g soil.

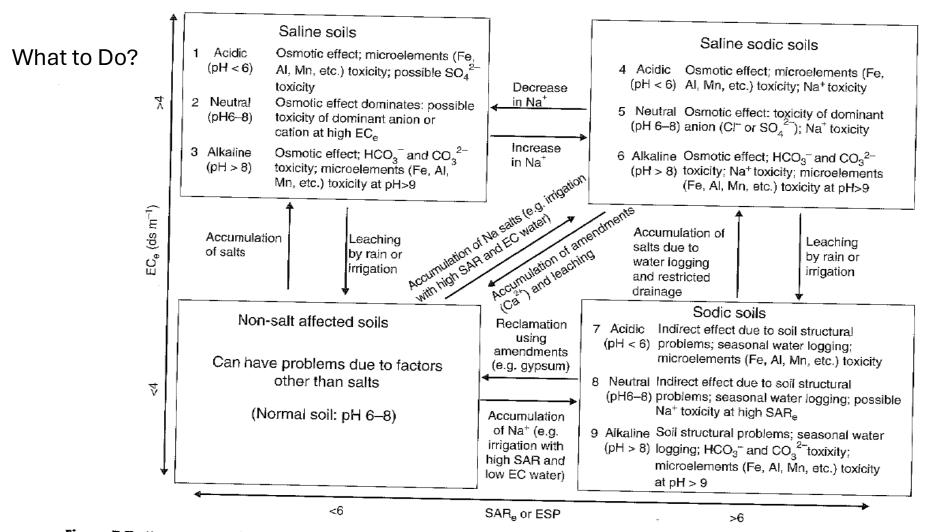
	SAR
slight	< 13
moderate	13-30
strong	> 30

Sodicity Damage

- Plants experience nutrient imbalance and water stress similar to that with salinity
- Plants suffer from soil physical changes
- When soils with excess Na are drained or washed with high quality irrigation water they can get dispersion, loss of structure, pore plugging with dispersed clay, low percolation and infiltration; crusting; hard-setting

Dispersion

- Clay particles become repulsive to one another.
- Structure breaks down large pores collapse
- Clay particles move downward, plug small pores
- The opposite of dispersion is flocculation.
- What is behind the dispersion problem with sodic soils?
 - Large sphere of hydration for Na



Salinity and Sodicity

- Salinity and sodicity exasperate water stress
- Drought strategies
 - Controlled irrigation: furrow, drip, sprinkler
 - Resistant resources: phenotypes and breeding
 - Agronomic: residue, rotation, and position
 - Bioresources: PGPR

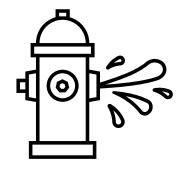


Figure 7.7 Key properties of the major types of salt-affected soils and possible mechanisms of impact on plant growth. Soils are categorised absorption ration (SAR) and electrical conductivity (ECe) measured in soil saturation extracts and pH1:5 measured in soil:water suspension. The (SARe \approx ESP) of 6 and above to classify a soil as sodic is based on the Australian soil classification criteria (Isbell, 1996); however, the general are of relevance worldwide. Toxicity, deficiency or ion-imbalance due to other elements (e.g. B, K, N, P) will depend on the ionic composition or and the particular species of plant.

Removing Excess Salinity

- You need water, water above and beyond what is needed to grow the crop
- The salt "Leaching Requirement"
- LR = EC_w/[5(EC_e)- EC_w] where EC_w is the electrical conductance of the irrigation water and EC_e is the electrical conductance of the soil at which no yield loss occurs. The EC_e value differs with the chosen crop.
- The fraction of additional water needed.

Managing Sodicity

- You need to remove Na, without causing dispersion you need both water AND Ca
- Why can't you use Ca carbonate?
- Gypsum (CaSO₄·2H₂O) is a cheap and more soluble Ca source
- The gypsum requirement, GR:

```
GR = 0.0086FD_s\rho_dCEC(ESP_i - ESP_f).
```

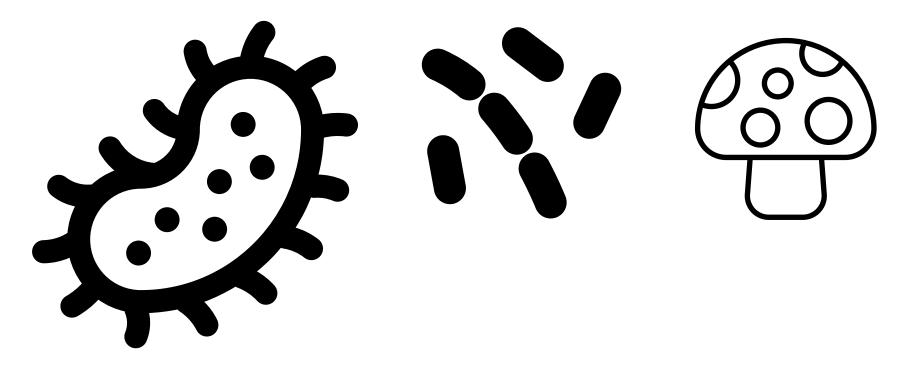

The Biological Perspective for Chemically Degraded Soils

Acidity and Alkalinity

Raise pH if it is acid - Lime with CaCO₃ or a Mg/Ca oxide Lower if the pH is alkaline - Everyone mineralizes, few solubilize when alkalinity is an issue

=

Agronomic Solutions


- Ridge planting avoids the most salt-affected soil a desperate solution.
- Increasing soil residue will decrease evapotranspiration and keep soil cooler
 - Maintains more water in soil and reduces plant stress
- Increasing soil organic matter improves soil structure and release soil nutrients

 - Reduces dispersion and increases infiltration
 Helps to minimize soil acidity effects by increasing CEC
 - Mineralization releases nutrients that replace chemical salts
 - Unless the organic matter is high in salts (e.g. poultry litter)
- Legumes replace chemical N as the N source and preserve available P

Microbial Solutions

Find Microbes That Persist in Saline or Sodic Environments and Improve Plant Growth in Water Stressed Environments

Pathways for Drought Tolerance Through Rhizosphere Bacteria

- Create phytohormones
- Produce the enzyme ACCdeaminase, which lowers the amount of ethylene
- Cause induced systemic resistance
- Develop biofilms
- Produce extracellular polysaccharides

Stress Tolerant Microbes That Enhance Growth

- Auxins, cytokinins, and gibberellins are among the phytohormones produced by rhizobacteria that help plants grow.
- Crop plants exposed to beneficial bacteria develop extensive roots, and root hairs, all of which may enhance the plant's capacity to endure various stressful environments
- P solubilizing bacteria reduce the need for chemical P fertilization

Microbes That Reduce Stress Hormones

- Ethylene is a plant stress hormone.
- The metabolic pathway leading from from methionine to ethylene is:

Methionine \rightarrow S-adenosylmethionine \rightarrow 1-aminocyclopropane-1carboxylic acid (ACC) \rightarrow ethylene (C₂H₄)

 Microbes with ACC deaminase reduce ethylene production and promote plant growth during water stress.

Common Genera Bacteria That Can be PGPR

- Acetobacter
- Azospirillum
- Bacillus (e.g. B. subtilis)
- Burkholderia
- Pseudomonas
- Rhizobium

PGPR = Plant Growth Promoting Rhizobacteria

Selection Strategies

=

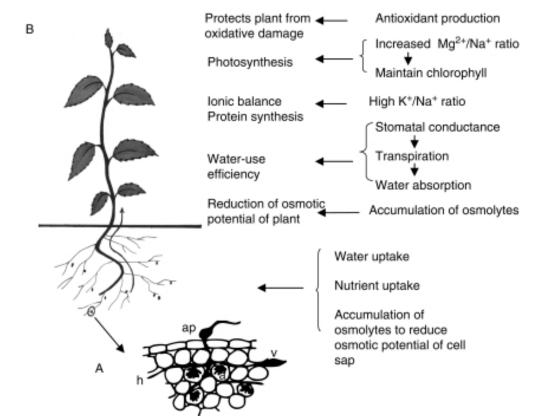
 Pick isolates that are inherently resistant to high salt and Na and water stress

+

0

- Increase mass in environments that mimic the stressed conditions
 - Inoculate in high numbers early
 - One interesting approach is to use rhizobia with PGPR properties and rotate with legumes
 - this maintains the population of the PGPR in the soil environment with time.
 - Rotation is good anyway

How Do Mycorrhizae (AMF) Improve Salt Tolerance?


- Enhance nutrient acquisition (P, N, Mg and Ca)
- Maintain the K⁺ : Na⁺ ratio
- Accumulate non salt osmolytes: proline, betaines, polyamines, carbohydrates and antioxidants
- Promote physiological changes (photosynthetic efficiency, relative permeability, water status, abscissic acid accumulation, nodulation and nitrogen fixation)
- Induce molecular changes (the expression of genes: PIP, Na⁺/H⁺ antiporters, Lsnced, Lslea and LsP5CS)
- Stimulate ultra-structural changes.

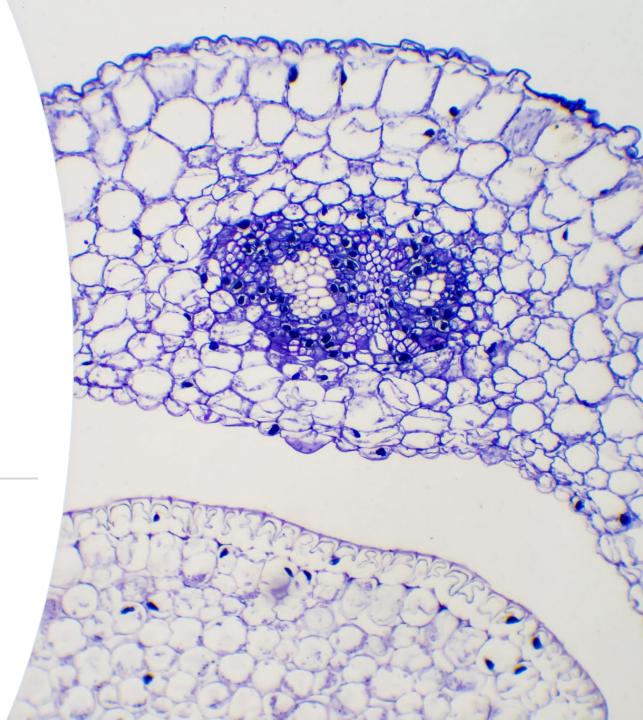
Mycorrhizae

Increase	Have	Develop	Extend	
Increase the volume of soil exploited for nutrients and water	Have the capacity to take up water at lower potential than plant roots	Develop improved aggregation in the soil surrounding roots, which increases percolation	Extend the lifespan of roots for water sorption	

<u>Fig. 2</u>

The intricate functioning of arbuscular mycorrhizal (AM) fungi in ameliorating salt stress in plants. In AM symbiosis, the fungus forms an appressorium (ap) on the root surface and enters the root cortex by extending its hyphae (h). The hyphae form arbuscules (a) and vesicles (v) in the cortex. Salinity deprives plants of the basic requirements of water and nutrients, causing physiological drought and a decrease in osmotic potential accompanied by nutrient deficiency, rendering plants weak and unproductive. Arbuscular mycorrhiza help plants in salt stress by improving water and nutrient uptake: a decrease in osmotic potential is countered by increasing accumulation of osmolytes, and water-use efficiency, photosynthesis and antioxidant production (to scavenge ROS) is more efficient in salt-stressed plants in the presence of AMF (see text).

From Evelin et al. (2009)



3/26/2024

Salinity Reduces Spore Formation

Reduces Overall Mycorrhizal Population and Diversity

Mycorrhizae still colonize roots at very high salinity

Table 1. Studies on percentage of AMF colonization in root under salinity stress* The range of salinity within brackets is the actual salt concentrations used by the authors.

Range of salinity*	Plant	Fungus	% root colonization in AM plants	References
1·4–7·4 dS m ^{−1}	Lycopersicon esculentum	Glomus mosseae	49.6–36	<u>Al-Karaki (2000)</u>
2–12 dS m ⁻¹	Lactuca sativa	Mixture of <i>Glomus</i> , <i>Acaulospora</i> and <i>Entrosphora</i> spp. procured from (<i>a</i>) saline playa or (<i>b</i>) non-saline vegetable farm	(a) 43·0–26·2 (b) 34·8–29·9	<u>Cantrell and Linderman (2001)</u>
2–12 dS m ⁻¹	Allium cepa	Mixture of <i>Glomus, Acaulospora</i> and <i>Entrosphora</i> spp. procured from (<i>a</i>) saline playa or (<i>b</i>) non-saline vegetable farm	(<i>a</i>) 61·7–38·8 (<i>b</i>) 28·8–18·0	Cantrell and Linderman (2001)
0–13·19 dS m ⁻¹ (0–100 mм)	Zea mays	Glomus mosseae	70–80	<u>Feng et al. (2002)</u>
0–6·10 dS m ^{−1} (0–3 g kg ^{−1})	Gossypium arboreum	<i>Glomus mosseae</i> : (<i>a</i>) GM1 from non-saline soils; (<i>b</i>) GM2 from saline soils	(a) 38 ± 3 to 15 ± 2 (b) 46 ± 5 to 21 ± 3	<u>Tian et al. (2004)</u>
40·2 dS m ^{−1}	Tamarix chinensis, Phragmites communis, Suaeda glauca, Aeluropus littoralis var. sinensis and Cirsium setosum (in Yellow River Delta, China)	Mixture of Archaeospora, Acaulospora a nd Glomus	0·2–9·5	<u>F. Y. Wang et al. (2004)</u>

Sources

- <u>Evelin, H., R. Kapoor, and B, Giri. 2009.</u> Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. <u>Ann Bot.</u> 2009. 104(7): 1263– 1280.
- Tahir, M.N. 2024. Evaluating the effect of microbial consortium for improving growth and quality of sorghum and residual effect of inoculation on berseem under water deficit conditions. PhD dissertation. University of Faisalabad, Pakistan.

Questions?

3/26/2024