

University of Baghdad college of Medicine 2023- 2024

Cell Lines

By Dr. YASAMIN AI-QASSAB PhD. Biomedical Science MOLECULAR AND CELLULAR ONCOLOGY

Introduction to Cell lines

► A cell line is a **permanently established cell culture** that will proliferate

indefinitely given appropriate fresh medium and space.

A cell culture developed from a single cell and therefore consisting of cells with a uniform genetic make-up.

> Cell culture refers to the **removal of cells from an animal or plant** and their

subsequent growth in a favorable artificial environment.

> The cells may be removed from the tissue directly and disaggregated by

enzymatic or mechanical means before cultivation, or they may be

derived from a cell line or cell strain that has already been established.

Primary culture

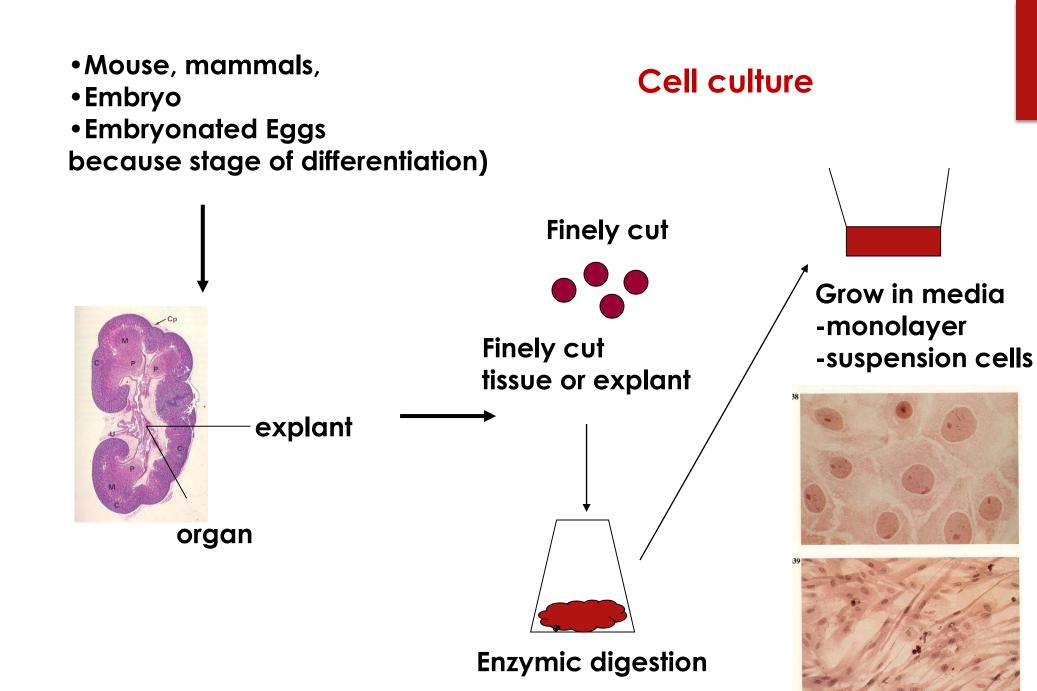
- > Primary culture refers to the stage of the culture after the cells are
 - **isolated** from the tissue and **proliferated** under the appropriate conditions until they **occupy all of the available substrate** (i.e., reach **confluence**).
- ➤ At this stage, the cells have to be subcultured (i.e., passaged) by transferring them to a new vessel with fresh growth medium to provide more room for continued growth.

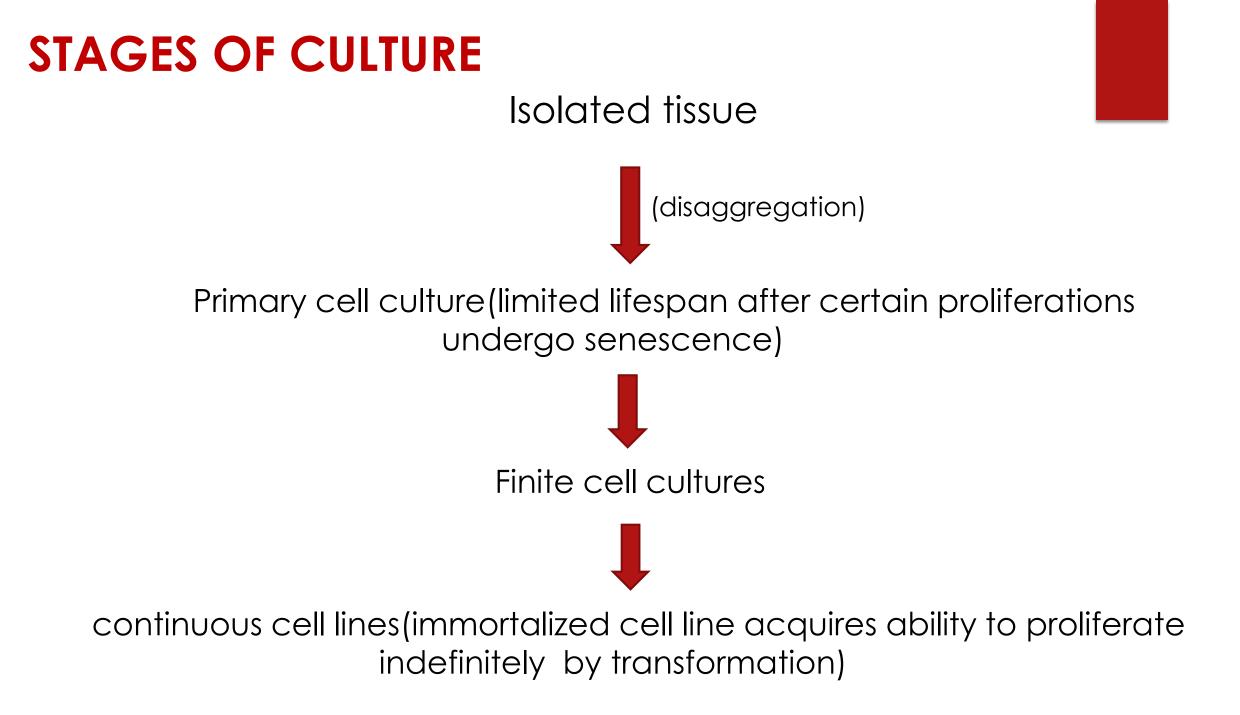
Cell line or subclone

After the first subculture, the primary culture becomes known as a cell line or subclone.

The term cell line refers to the propagation of culture after the first subculture

Cell lines derived from primary cultures have a limited life span (i.e., they are finite), and as they are passaged, cells with the highest growth capacity predominate, resulting in a degree of genotypic and phenotypic uniformity in the population.




> If a subpopulation of a cell line is positively selected from the culture by

cloning or some other method, this cell line becomes a cell strain. A

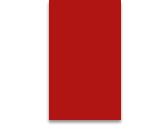
cell strain often acquires additional genetic changes subsequent to

the initiation of the parent line.

Culture Conditions

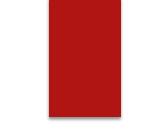
Culture conditions vary widely for each cell type, but the artificial

environment in which the cells are cultured invariably consists of a suitable


vessel containing the following:

> a substrate or medium that supplies the essential nutrients (amino acids,

carbohydrates, vitamins, minerals)


- > growth factors
- hormones

y gases (O₂, CO₂)

- a regulated physico-chemical environment (pH, osmotic pressure, temperature)
- Most cells are anchorage-dependent and must be cultured while attached to a solid or semi-solid substrate (adherent or monolayer culture), while others can be grown floating in the culture medium (suspension culture).

Cryopreservation

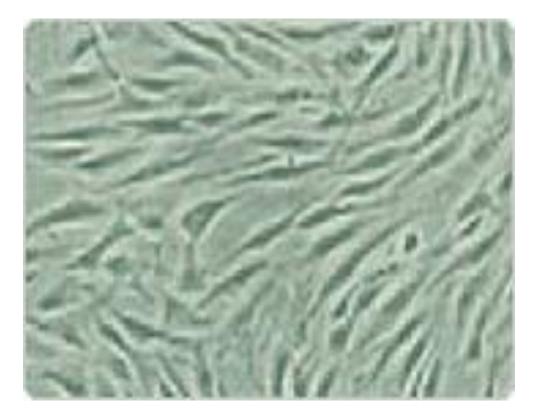
If a surplus of cells are available from subculturing, they should be treated

with the appropriate protective agent (e.g., DMSO or glycerol) and stored at

temperatures below -130°C (cryopreservation) until they are needed.

Morphology of Cells in Culture

Cells in culture can be divided in to three basic categories based on their

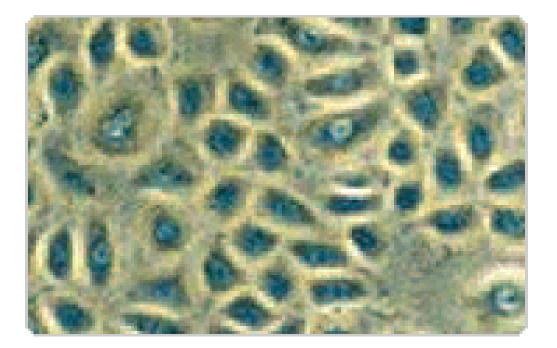

shape and appearance (i.e., morphology).

Fibroblastic (or fibroblast-like) cells are

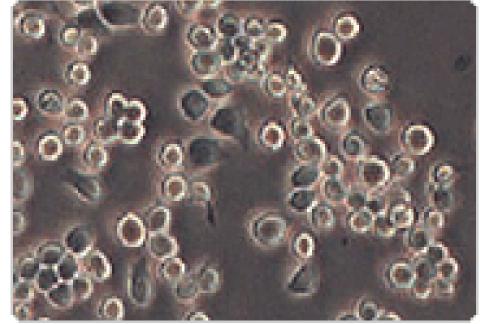
bipolar or multipolar, have elongated

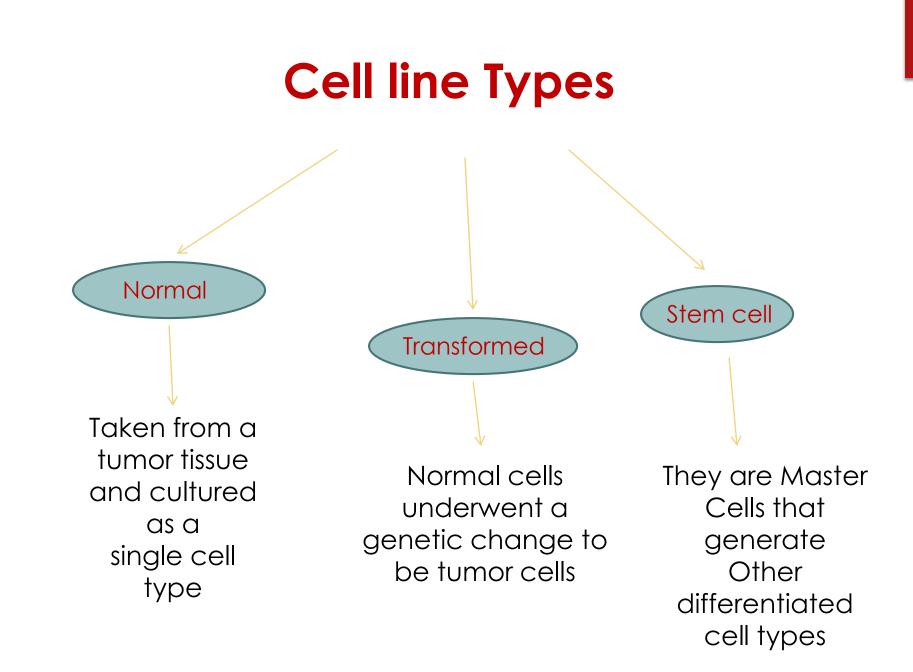
shapes, and grow attached to a

substrate.



Epithelial-like cells are polygonal


in shape with more regular


dimensions, and grow attached

to a substrate in discrete patches.

Lymphoblast-like		cells		are
spherical in	shape	and	USI	Jally
grown in	suspens	sion	wit	nout
attaching	to o	a	surf	ace.

Types of Cell Lines:

Finite cell lines

Continuous cell lines

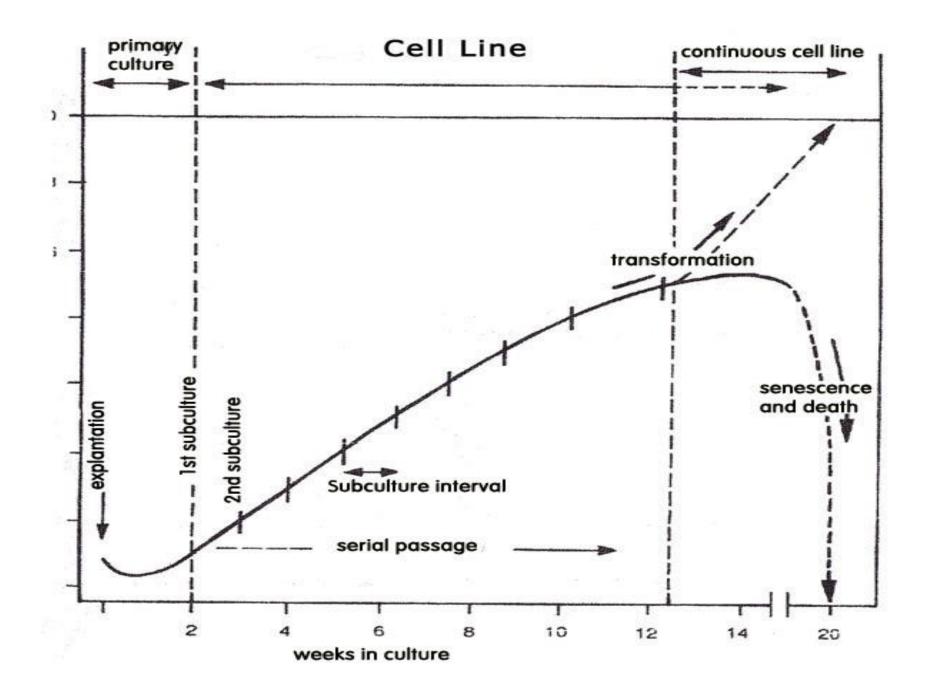
Finite Cell Lines :

- \succ Normal cells usually divide only a limited number of times before losing their
 - ability to proliferate, which is a genetically determined event known
 - as **senescence**; these cell lines are known as **finite**.
- \succ The cells normally divide 20 to 100 times (i.e. is 20-100 population doublings)
 - before extinction. The actual number of doublings depends on the species,
 - cell lineage differences, culture conditions etc.
- \succ The human cells generally divide 50-100 times, while murine cells divide 30-50

times before dying.

Continuous Cell Lines or Immortal cell lines

> When a finite cell line undergoes transformation and acquires the ability to


divide indefinitely, it becomes a **continuous cell line**.

> The continuous cell lines are transformed, immortal and tumorigenic. The

transformed cells for continuous cell lines may be obtained from normal

primary cell cultures (or cells strains) by treating them with chemical

carcinogens or by infecting with oncogenic viruses.

Property	Finite cell line	Continuous cell line
Growth rate	Slow	Fast
Mode of growth	Monolayer	Suspension or Monolayer
> Yield	Low	High
> Transformation	Normal	Immortal, tumorigenic
> Ploidy	Euploidy	Aneuploid
> Anchorage dependence	Yes	No
Contact inhibition	Yes	Νο
> Cloning efficiency	Low	High
Serum requirement	High	Low
> Markers	Tissue specific	Chromosomal, antigenic or enzymatic

Comparison of properties of finite and continuous cell lines

Nomenclature of Cell Lines:

- It is a common practice to give codes or designations to cell lines for their identification. For instance, the code NHB 2-1 represents the cell line from normal human brain, followed by cell strain (or cell line number) 2 and clone number 1.
- While naming the cell lines, it is absolutely necessary to ensure that each cell line designation is unique so that there occurs no confusion when reports are given in literature.
- Further, at the time of publication, the-cell line should be prefixed with a code designating the laboratory from which it was obtained e.g. NCI for National Cancer Institute, WI for Wistar Institute.

Selecting the Appropriate Cell Line

Consider the following criteria for selecting the appropriate cell line for your

experiments:

Species:

In general, **non-human cell lines** have less risk of biohazards, hence preferred. However, species differences need to be taken into account while extrapolating the data to humans.

Functional characteristics: What is the purpose of your experiments? For example, liver- and kidney-derived cell lines may be more suitable for toxicity testing.

Finite or continuous cell lines:

clone and maintain, and produce higher yield. But it is doubtful whether the

continuous cell lines express the right and appropriate functions of the cells.

Therefore, some workers suggest the use of finite cell lines, although it is

difficult.

Transformed cell lines usually have an increased growth rate and higher

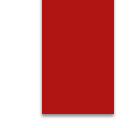
plating efficiency, are continuous, and require less serum in media, but they

have undergone a permanent change in their phenotype through a genetic

transformation.

Growth characteristics:

The following growth parameters need to be considered:


i. Population doubling time

ii. Ability to grow in suspension

iii. Saturation density (yield per flask)

iv. Cloning efficiency

Stability:

The stability of cell line with particular reference to cloning, generation of

adequate stock and storage are important.

Phenotypic expression:

It is important that the cell lines possess cells with the right phenotypic expression.

EXAMPLES OF ESTABLISHED CELL LINES

▶ May be derived from Normal or Tumor cells.

Cell line	Organism	Origin Tissue
HeLa	Human	Cervical cancer
293-T	Human	Kidney (embryonic)
A-549	Human	Lung carcinoma
ALC	Murine	Bone marrow
СНО	Hamster	Ovary
HB54	Hybridoma	Hybridoma
FM3	Human	Metastatic lymph node

Animal cell lines and products

Cell line	Product		
Human tumour	Angiogenic factor		
Human leucocytes	Interferon		
Mouse fibroblasts	Interferon		
Human Kidney	Urokinase		
Transformed human kidney cell line, TCL- 598	Single chain urokinase-type plasminogen activator (scu-PA)		
Human kidney cell (293)	Human protein (HPC)		
Dog kidney	Canine distemper vaccine		
Cow kidney	Foot and Mouth disease (FMD) vaccine		
Chick embryo fluid	Vaccines for influenza, measles and mumps		
Duck embryo fluid	Vaccines for rabies and rubella		
	Tissue-type plasminogen activator (t-PA)		
Chinese hamster ovary (CHO) cells	B-and gamma interferons		
	Factor VIII		

Applications

- Screening of the anti cancer drugs
- Cell based bioassay
- ► To determine the cytotoxicity
- In vitro screening of several drugs
- Production of antiviral vaccines
- Cancer research, which required the study of uncontrolled cell division in cultures
- Cell fusion techniques
- Genetic manipulation
- Study of the effects of toxins & pollutants using cell lines
- Study of the function of nerve cells
- Chromosome analysis of cells derived from womb

Thank you