SKY WAVE RADIO COMMUNICATION PREDICTION FOR BSC,MSC AND PHD STUDENTS AND RESEARCHERS

Ahmed Al Banna

Information and communication engineering department

HF PROPAGATION MODELS

• ICEPAC - Ionospheric Communications Enhanced Profile Analysis & Circuit prediction

program

- VOACAP Voice Of America Coverage Analysis Program
- REC533 Recommendation ITU-R P.533-6

ICEPAC

- IONCAP IONospheric Communications Analysis and Prediction program (1983)
- ICED Ionospheric Conductivity and Electron Density profile model -Tascione (1987)
 - sub-auroral trough
 - auroral zone
 - polar cap

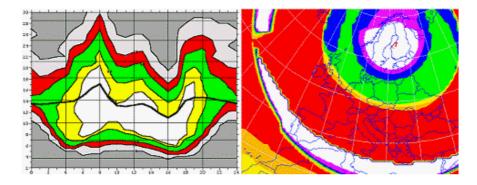
• Use Kp to model solar storms

VOACAP

- 1985 VOA adopts IONCAP as model to be used for broadcast station design
- NRL modifies IONCAP into VOACAP
- o 1993 VOACAP released
- 1993 NTIA/ITS add DOS GUI interface
- o 1996 Windows 3.x 16-bit version
- o 1997 Windows-NT 32-bit version
- Present 04.0324W Windows-XP/2000/NT/95/98

REC533

Recommendation ITU-R P.533-6 First released - July 1993 International HF Coordination


USERS OF THE SOFTWARE

- HF Broadcasters (VOA, BBC, ITU, HFCC)
- Military
- Defense contractors
- Airline communications
- HAMs

VOACAP Quick Guide

by Jari Perkiömäki, OH6BG

High-Frequency Ionospheric Communications Analysis and Prediction

Updated: 1 January 2004

This is a brief, a work in progress, guide to using VOACAP - a free professional HF prediction program from NTIA/TTS, originally developed for Voice of America (VOA). This guide should get you well started with VOACAP. A more comprehensive discussion about the finer details of using the software can be found in George Lane's recently-published book <u>Signal-to-Noise Predictions Using VOACAP</u>. A User's Guide (Rockwell Collins).

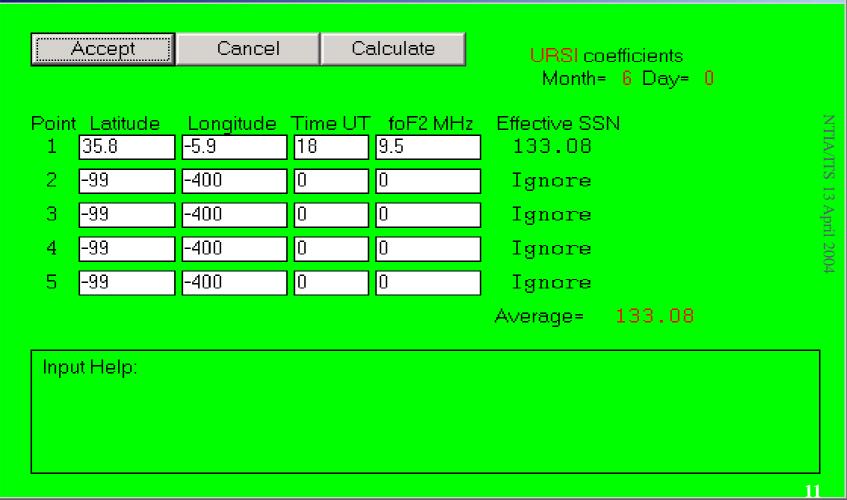
NTIA/ITS 13 April 2004

NOAA has changed how they put out the Ionospheric indices that are used in the NTIA/ITS HF Propagation Models. This will try to explain what indices to use.

•The SunSpot Number (SSN) used by these HF prediction programs should be what is called R12 - the **Smoothed SunSpot Number.** •NGDC used to have it linked in this table. •That was last updated May 15, 1999. •George Lane says to use: ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SUNSPOT_NUMBERS/sunspot.predict for compatibility with VOACAP. •SEC also maintains SunSpot data with slightly different numbers under Solar Cycle Progression. •For past values, you must use the <u>Recent Solar Indices</u> table. •The proper column in this table is Smoothed RI •For predicted values, you must use the Predicted Indices table. •The proper column in this table is SunSpot Number Predicted •You will notice that the Predicted table is about 6 months behind the current date. That is because it takes that long for the smoothed SunSpot Number to become permanent. •I questioned someone at SEC as to what was the difference between SEC's and NGDC's sunspot predictions, and here is his response. •Note: We cannot control the content nor accessibility of the NOAA web pages.

POINT-TO-POINT DATA INPUT

📲 ICEPAC Point-to-Point data input


TCEPAL PUIIL-	to-Point uata input	- 비스
<u>File R</u> un <u>V</u> iew	Save to: Help	
<u>M</u> ethod	20 = Complet <u>e system performance (C.S.P.)</u>	
<u>Y</u> ear	1995 <u>Coefficients</u> URSI 88 (Australian)	
Time	01 to 24 by 1 hours UT	
<u>G</u> roups	Month.Day= 6.00	
	SSN = 100 Qindex = 0.000	
Transmitter	44.23N 76.50W KINGSTON	
<u>R</u> eceiver	36.83S 174.78E AUKLAND	
<u>P</u> ath	Short Distances: 14123km 7626nmi 8776mi Azimuth: 251.7deg	
<u>F</u> req(MHz)	6.075 7.200 9.700 11.850 13.700 15.350 17.725 21.650 25.885	
<u>S</u> ystem	Noise Min Angle Req.Rel. Req SNR Multi Tol Multi Del 145(-dBw) 0.10deg 90% 73dB 3.00dB 0.10msec	
<u> </u>	1.00*foE 1.00*foF1 1.00*foF2 0.70*foEs	
<u>T</u> x Antenna	# Min Max Design Directory\Filename.sfx Model MainBeam Power kW 1 2 30 0.000 DEFAULT \CONST17.VOA 2-D Table 0.0 500.0000	
<u>R</u> x Antenna	DEFAULT \SWWHIP.VOA 0.0deg 0.00dB	
Input Help:		

IONOSPHERIC COEFFICIENTS

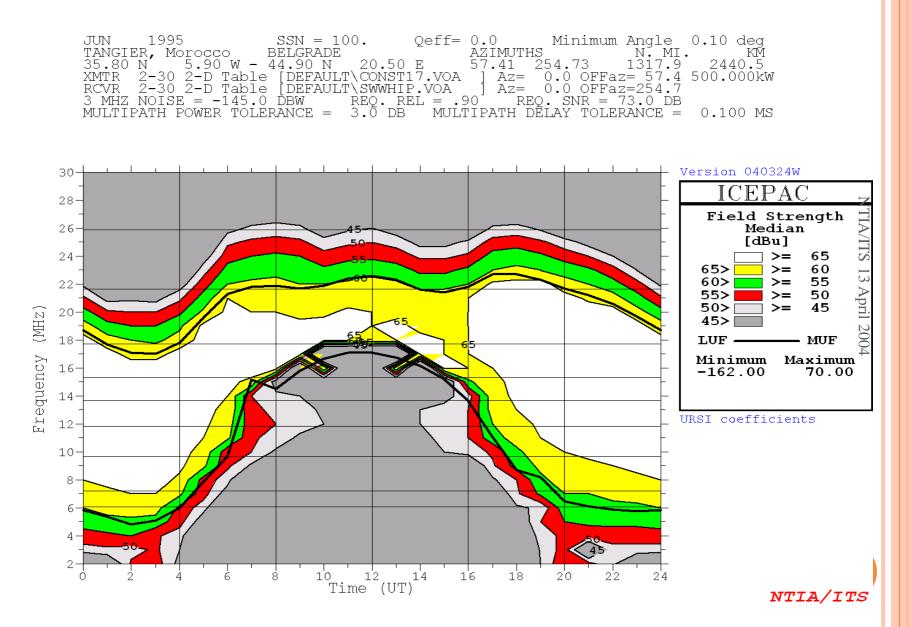
- CCIR/Oslo
- o URSI88/Australian
- \circ Daily foF2 interpolated URSI88

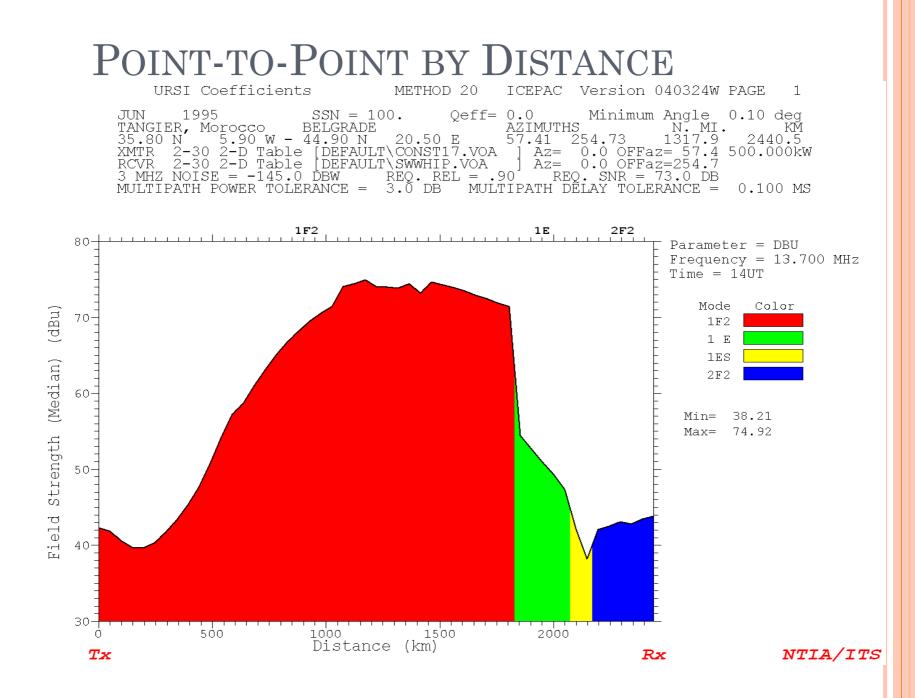
ICEPAC - EFFECTIVE SSN

Specify foF2 values to calculate Effective SSN

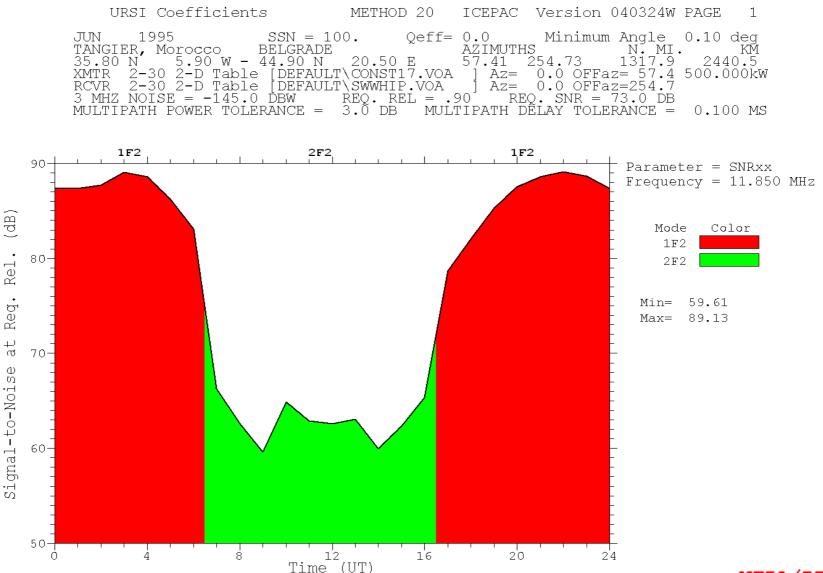
X

POINT-TO-POINT OUTPUT

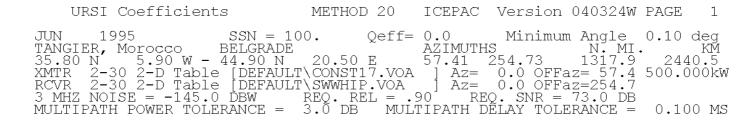

	×
--	---

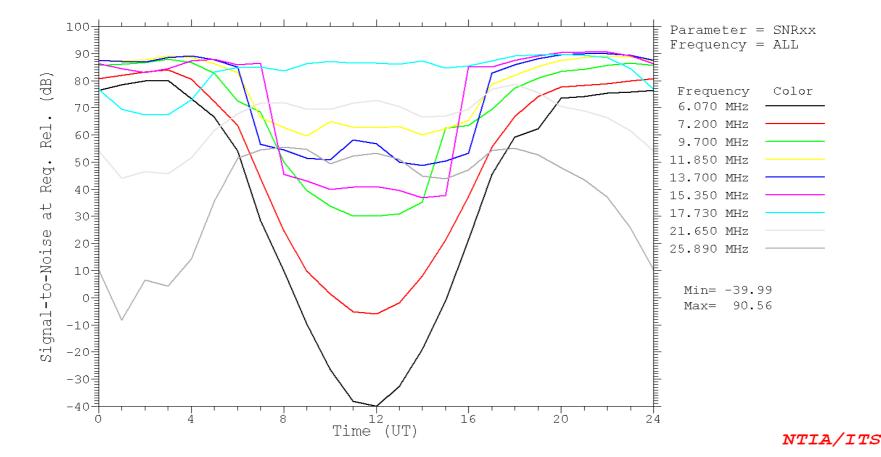

<u>File E</u> dit			
URSI Coefficients	METHOD 20 ICEPAC	Version 040324	IW PAGE 1
JUN 1995 SSN = 10			
TANGIER, Morocco BELGRADE			
35.80 N 5.90 W - 44.90 N			
XMTR 2-30 2-D Table [DEFAULT RCVR 2-30 2-D Table [DEFAULT	\CUNSI17.VUH HZ=	0.0 UFFAZ= 57.	.4 500.000KW
3 MHZ NOISE = -145.0 DBW	\3wwHIF.VUH] HZ-	0.0 UFFdZ=234. 0 SND = 79 0 F	. / \P
MULTIPATH POWER TOLERANCE =			
NOETTAIN TOWER TOLERANCE -			- 0.100 h5
1.0 17.7 6.1 7.2 9.7 11.9	13.7 15.4 17.7 21.6	25.9 0.0 0.0) FREQ
1F2 1F2 1F2 1F2 1F2 1F2	1F2 1F2 1F2 1F2	1F2 – –	
14.1 7.6 7.9 8.5 9.1	9.7 10.5 14.1 14.1	14.1	ANGLE
8.9 8.5 8.5 8.6 8.6			DELAY
450 292 297 312 326			V HITE
0.50 1.00 1.00 1.00 0.97			MUFday
127 122 120 118 118			LOSS
		-16	DBU
	-62 -63 -70 -98		S DBW
-166 -149 -152 -158 -161			N DBW
96 87 91 97 99 3 -5 -9 -13 -14	101 101 96 71 -14 -11 3 29		SNR
			RPWRG REL
			MPROB
0.46 0.57 0.67 0.75 0.76			S PRB
	10.3 14.0 25.0 25.0		SIG LW
	5.9 6.5 11.1 25.0		SIG UP
	14.0 17.0 26.8 26.8		SNR LW
12.5 10.3 9.0 8.1 8.1	8.2 8.7 12.6 25.7	25.7	SNR UP
17.0 17.0 17.0 17.0 17.0	17.0 17.0 17.0 17.0	17.0	TGAIN
-0.5 -2.1 -1.9 -1.7 -1.6			RGAIN
		-8	SNRxx
-40 -32 -31 -30 -31	-32 -33 -40 -68	-122	DBM

12


.

POINT-TO-POINT GRAPH

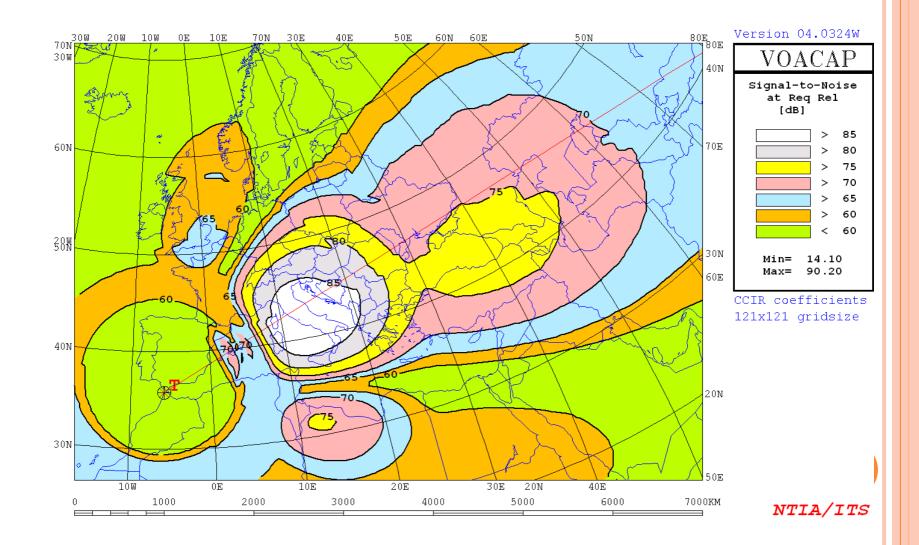



POINT-TO-POINT BY TIME

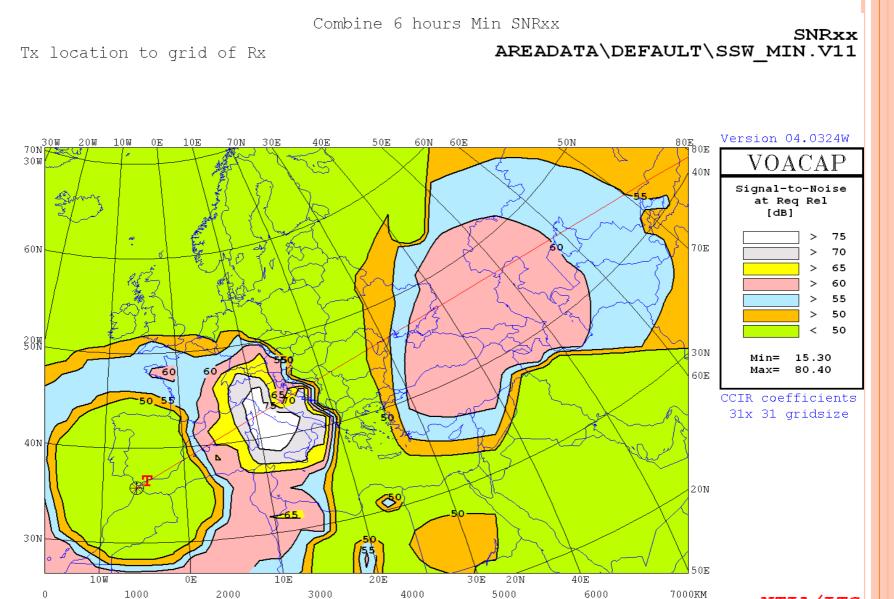
NTIA/ITS

POINT-TO-POINT BY TIME

AREA COVERAGE DATA INPUT

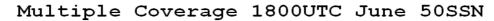

🗱 VOACAP Area Coverage data input	
Eile Run Abort Save to: Comments Help	
Layers Grid Countries Zones Cities MainBeam Contours Black Blue Magent Ignore Red Black with shading	
Parameters MUF DBU SNRxx REL Contours	
<u>G</u> rid 0=Great Circle Size= 31 x 31	
Path Short	
<u>Coefficients</u> CCIR (Oslo) <u>Method</u> 20 = Auto Select	
Transmitter 35.80N 5.90W TANGIER, Morocco	
Plot Center 35.80N 5.90W TANGIER, Morocco	
X-range= -1000.0km to 6000.0km Y-range= -1000.0km to 4000.0km	
<u>Groups</u> Month.Day= 6.00	
SSN = 100 Time UT = 18	
Freq MHz = 11.850	
System Noise Min Angle Req.Rel. Req SNR Multi Tol Multi Del	
145(-dBw) 0.10deg 90% 73dB 3.00dB 0.10msec	
<u>Eprob</u> 1.00*foE 1.00*foF1 1.00*foF2 0.00*foEs	
Tx Antenna default \CCIR.003 REC705 #01 0.000MHz 57.0deg 500.0000kW	
Ex Antenna DEFAULT \SWWHIP.VOA 0.0deg 0.00dB	
Input Help:	

AREA COVERAGE MAP


TANGIER, Morocco [HR 4/4/.5] 500kW 57deg 18ut 11.850MHz Jun 100ssn

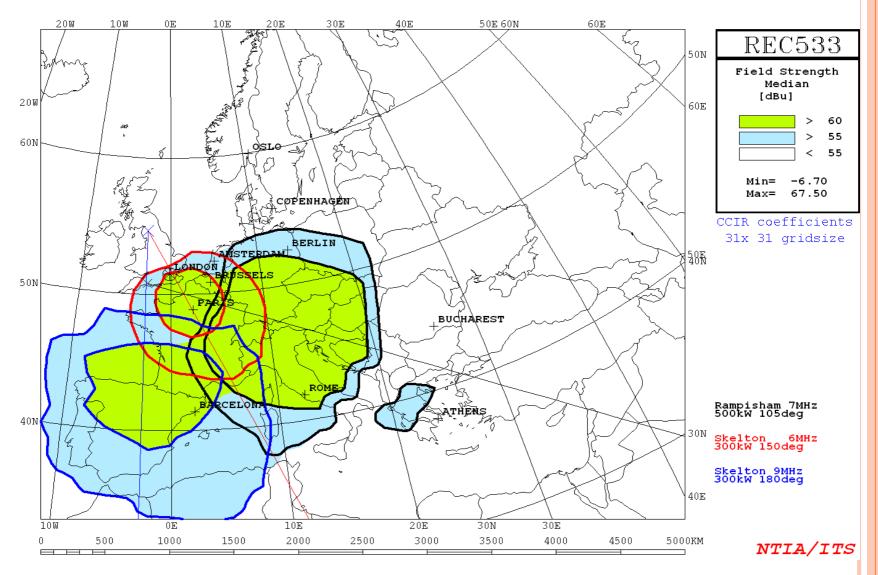
 SNRxx

 Tx location to grid of Rx
 AREADATA\DEFAULT\DEF_121.V31



COMBINE MULTIPLE COVERAGES

NTIA/ITS


OVERLAY MULTIPLE COVERAGES

DBU

areadata\ian\overlay3.ovl

Overlay of multiple grid files

ANY QUESTIONS?