

Is Stereotactic Linear Accelerator Can Replace The Treatment By Cyberknife or Gamma Knife?

By

- Dr. Haydar Hamza Alabedi
- Dr. Nabaa Mohammed Ali

Stereotactic

- Stereo: from Greek word Stereos =
 3D solid
- Tactic: from Greek word taxis = orientation
- Stereotactic:

Use of 3D coordinate s system to
localize a target more accurately.
Initially has been accomplished
using rigid head ring.

Stereotactic Devices

CyberKnife

Gamma Knife 03

Interaction of X or y-photons with human body

 The probability that photon interact with matter by any of three phenomena (photoelectric effect, and Compton scattering, and pair –production) is dependent on <u>photon</u> <u>energy (hv)</u> and on the <u>atomic number of the</u> <u>attenuating material</u>.

 Generally, the <u>photoelectric absorption</u> is the predominant with photon of low energies, <u>Compton scatter</u> is the effect of intermediate energies and at high energies the <u>pair-</u> <u>production</u> takes place, which is the interaction that <u>predominant with radiation therapy</u>

2.50

γ_1 (1.17 *MeV*)

1.33

Energy (MeV)

γ_2 (1.33 *MeV*)

Cyberknife

- The CyberKnife system is a non-invasive treatment frameless stereotactic radiosurgery (SRS) instrument that consists of a 6megavolt linear accelerator (LINAC) mounted on an industrial robot, a repositionable treatment couch, orthogonally placed digital x-ray cameras, and a computerized targeting system, used to treat spine tumors.
- Stereotactic radiosurgery (SRS) is a form of radiation therapy that focuses high-power energy on a small area of the body.
- The CyberKnife System is a radiation therapy device manufactured by Accuray Incorporated.

10/9/2023

WE HAVE-ELEKTA

CONES- FOR SUBCENTEMETER TUMORS

AGILITY HEAD-MOP SMALLER TUMORS

FRAXION-NON INVASIVE, FRAMELESS COMFORTABLE MASK

CONE BEAM CT-ONLINE CT BASED CORRECTION

HEXAPOD-EXTRA DEGREE OF ROTATIONAL CORRECTION

WHAT WE HAVE?

AGILITY HEAD-MORE CONFIRMITY FOR

ELEKTA AGILITY

ELEKTA

Evidence

Innovation

10/9/2023

Agility™ Intelligent beam shaping

ELEKTA AGILITY

10/9/2023

High resolution beam shaping

ELEKTA AGILITY

CBCT- CONE BEAM CT

detectors

CBCT- CONE BEAM CT

HEXAPOD

SRS SMALL FIELD CONES

Fig. 1. New Elekta's stereotactic collimation system: stereotactic cone and holder attached to the linac's head.

Cyberknife

- The CyberKnife system is a non-invasive treatment frameless stereotactic radiosurgery (SRS) instrument that consists of a 6megavolt linear accelerator (LINAC) mounted on an industrial robot, a repositionable treatment couch, orthogonally placed digital x-ray cameras, and a computerized targeting system, used to treat spine tumors.
- Stereotactic radiosurgery (SRS) is a form of radiation therapy that focuses high-power energy on a small area of the body.
- The CyberKnife System is a radiation therapy device manufactured by Accuray Incorporated.

The and storage of the secondary collimator

X-ray Sources

Infrared Stereo Camera System

6-Axis Manipulator

> **6 MV** Linac

RoboCouch® Patient Support Table

Introduction to CyberKnife

- A treatment unit designed for both intracranial and extracranial radiosurgery.
- CyberKnife has 6-degrees of freedom.
- Pencil beams of radiation are delivered sequentially as the robot moves around patient.

1.The Treatment Head

- one of the three secondary beam collimation systems available
- A set of 12 fixed circular collimator cones with nominal diameters ranging from 5 to 60 mm at 800 mm distance from the source
- the Iris® variable aperture collimator capable of achieving the same nominal field sizes with those of fixed collimators.
- the InciseTM multi leaf collimator exhibiting 3.85 mm leaf width and maximum achievable field size of 100
 × 115 mm2 at 800 mm distance from the source

Robotic Accuray

TECHNICAL DATAMaximum Reach2496 mmRated Payload300 kgNumber of Axes6WeightApprox. 1120 kgPose Repeatability (ISO 9283)+/- 0.06mm (60 microns)						
Maximum Reach2496 mmRated Payload300 kgNumber of Axes6WeightApprox.1120 kgPose Repeatability (ISO 9283)+/- 0.06mm (60 microns)		TECHNICAL DATA				
Rated Payload300 kgNumber of Axes6WeightApprox. 1120 kgPose Repeatability (ISO 9283)+/- 0.06mm (60 microns)5 micron	2496 mm 300 kg 6	2496 mm		Maximum Reach		
Number of Axes6WeightApprox. 1120 kgPose Repeatability (ISO 9283)+/- 0.06mm (60 microns)5 micron		300 kg		Rated Payload		
WeightApprox. 1120 kgPose Repeatability (ISO 9283)+/- 0.06mm (60 microns)5 micron			Number of Axes			
Pose Repeatability (ISO 9283) +/- 0.06mm (60 microns) 5 micron		Weight Approx. 1120 kg	Weight			
	5 microns	microns)	+/- 0.06mm (60	Pose Repeatability (ISO 9283)		

s less than a human hair!

© Accuray and/or its affiliates. All rights reserved. Accuray confidential. | 23

2.Image Guidance System (IGRT)

1. The X-Ray Imaging System

• The X-ray tubes are operated at voltages ranging from 40 to 150 kV using one of the two available focal spot sizes (0.6 mm and 1.2 mm)

2. The Optical Camera System

- It consists of three cameras in a ceiling-mounted retractable boomarm and is used to track targets that are affected by respiratory motion in combination with intrafraction X-ray images
- This camera array detects the position of three optical markers (red LEDs communicating with the system via optical fibers) attached to the patient surface.
- These measurements are used to create a correlation model between the patient's breathing pattern, determined by the external markers, and the precise location of the tumor (or a tumor surrogate, e.g. fiducial markers)

Treatment Planning and Delivery Overview

- Treatment planning is performed using a vendorprovided software suite (currently, the Accuray Precision®) and aims to determine the optimum geometric arrangement of treatment beams and radiation fluence per beam
- Treatment Delivery

What if you could:

- Precisely monitor patient and tumor motion in real time with automatic 6D motion tracking and correction
- Detect and correct for tumor motion with sub-millimeter precision with continual image guidance
- Deliver highly accurate and precise treatment for inoperable tumors

REAL-TIME TUMOR TRACKING

Synchrony[®] Respiratory Tracking System True dynamic real-time tracking

- Monitors chest wall positions throughout treatment in real-time
- Chest wall motion with target position throughout respiratory cycle
- Establishes path of motion for robot during beam-on
- Eliminates need for breath-hold or gating techniques

Gantry and CyberKnife[®] Lung SBRT

Gantry SBRT

Linac-based lung SBRT requires larger margins to avoid treatment inaccuracies **CyberKnife System treatment deliveries spare 40% of healthy tissue***

* may vary on a case by case basis

CyberKnife[®] System **SBRT**

Subclinical Disease

TUMOR

Gamma Knife (GK)

- Contains 192 60Co sources that are channeled through a tungsten collimator helmet.
- Generates narrow radiation pencil beams to coincide within 0.1 mm of each other at the center of the helmet.
- Multiple circular collimators are used to generate "shots" to fill a particular volume using one or multiple isocenters.
- Doses are typically prescribed to the 50% isodose line.
- There are Icon helmets with varying collimator sizes of 4, 8, 14, and 18 mm.

CyberKnife Routine QA Procedures

Daily QA

- Linac Output
- Various voltages and currents
- Robot perch position
- Safety interlocks
- Coincidence of treatment beam with imaging center (AQA)

- Beam Energy
- Flatness/symmetry/penumbra
- Robot pointing (b.b. test)
- End-to-end test
- Laser/radiation coincidence
- Imaging system alignment
- Couch position accuracy

Quarterly QA

- Imaging system alignment
- Couch position accuracy

- Spot check beam data • Treatment planning system beam data and calculation checks.

Monthly OA

Annual QA

Patient

Irradiation

Approval

Linac

- Low and high X-ray photon beam
- MLC (<6 mm width) for treating small targets especially in the brain

- ➢ photon energies (6−18 MeV)
- limited number of beam angles
- frame-based fixation (Mask)
- > 3 to more than 15 sessions
 - Treat all the body sites

Cyber Knife

Low X-ray photon beam

- Fixed collimators or
 dynamic aperture collimator
 both having a round shape
 with diameter from 5 up to
 60 mm
- > photon energies (up to 6 MeV)
- \succ six degrees of freedom
- ➤ Farmless
- > 1-5 sessions
- Specific and non operable sites

Gamma Knife \blacktriangleright High energy gamma ray or \triangleright fixed collimators \blacktriangleright Dose 20 Gy \succ six degrees of freedom Frame or Mask Single session Only brain lesions

Quality Assurance

The essential requirement for the clinical use of the LINAC is quality control based on well-defined protocols The quality-assurance protocols address the precision of the target volume and target point with CT, MRI, PET and angiography, the dosimetry, the planning of the irradiation, and especially with the calibration of the absolute dose and of the dose application.

For the quality-assurance assessment proper phantoms and specialized dosimetric instruments must be available.

Table 1. Daily QA of the machine

Verify presence of emergency equipment and procedures

Verify audio/visual monitoring

10/9/2023

Verify radiation monitors (fixed and portable)

Verify source position indicator lights

Verify that interlocks and interrupts are functional

Verify timer accuracy (2%) and exposure termination

Verify that the docking device is securely mounted to the table and that the frame adapter can be correctly docked in the docking device

Quality Assurance Program on Stereotactic Radiosurgery

Report from a Quality Assurance Task Group

Contributing Authors Wesshell Latz - Jürgen Arrolt - Igor Frankov Ervin B. Podgorsak - Lohar Schall - Christopher Serage Stantider M. Varsinsky

Günther H. Hartmann

Dosimetry and QA devices

SRS VS SRT

- SRS and SRT are very similar, but **SRS** delivers a large dose of radiation on a **single day** and SRT has a fractionated treatment schedule.
- This means that in **a SRT** treatment the patient will have treatments spanning **multiple days.**
- Although, the total dose in SRT may be larger than in SRS any single day will have a much smaller dose delivery.

10/9/2023
Choice between SRS/SRT

<u>**Tumor volume</u>** — As the size of the target lesion for SRS</u> increases, incidental irradiation to the surrounding normal tissue also increases. This may be important since a much higher dose of irradiation is administered with SRS compared to fractionated RT. SRS was not recommended for <u>lesions >4 cm</u> because adequate control could not be achieved without an unacceptable level of radiation toxicity to surrounding normal tissue. **Proximity to cranial nerves** — The proximity of a target to cranial nerves can cause radiation neurotoxicity, despite the steep decrease in dose outside the intended target Fractionated RT should be considered when SRS may jeopardize cranial nerve function.

Cranial nerves II and VIII are more sensitive to radiation injury than the other cranial nerves. SRS is generally avoided if the maximal dose delivered to the optic nerve exceeds 10 Gy. <u>Location of the lesion</u> — The risk of developing permanent damage following SRS varies dramatically with the location of the lesion in the brain. Fractionated RT is often preferred to SRS for the treatment of lesions in the deep gray matter or the brainstem

Disadvantages of SRS/SRT

High cost of purchase and use
Risk of neurological injury
Risk of mechanical inaccuracy
Potential necessity of multiple

Clinical Indication

© Mayfield Clinic

High
dose

Pituitary Adenoma

Acoustic Neuroma

Trigeminal Neuralgia

Brain Metastasis

Reirradiation For Recurrent Gliomas

Atrioventricular malformation

AVM

AVM

AVM NIDUS

Spetzler-Martin AVM Grading Scale

Size

0-3 cm 3.1-6.0 cm > 6 cm Location Noneloquent Eloquent * Deep venous drainage Not Present Present

AVM Total Score

Points
1
2
3
0
1
1
0
1
1-5

The Spetzler-Martin AVM Grading Scale is based on size, location, and venous drainage of intracerebral AV malformation. The score is calculated by adding the points for each category. The range is 1 to 5. The lower the score, the better the outcome.

*Eloquent locations-

areas of sensorimotor, language, visual, thalamus, hypothalamus, internal capsule, brain stem, cerebellar peduncles, and deep cerebellar nuclei

AVM MANAGEMENT

EMBOLIZATION

- Curative embolization
- Partial (staged embolization)
- Pre-op embolization
- Pre-radiosurgery embolization

CONSERVATIVE MX AVM

The AVM may be very extensive, located deeply with supply from deep perforating vessels which are not amenable for surgery or endovascular treatment.

Very old age would be consideration for conservative treatment. Obviously poor medical condition, such as advanced heart diseases, respiratory insufficiency or cancer with metastasis would be contraindication to a definitive AVM treatment

avr 0/9/2023

RADIOSURGERY

- intervention or if microsurgery is not feasible.
- target within late reaction of normal tissue.
- •

Radiosurgery is an effective alternative treatment for selected AVM patients rather than microsurgery, especially in those with surgically inaccessible **lesions** with comorbidities which hinder surgical

In terms of radiobiology, AVM are late responding

Following bleeding, part of nidus may be hidden or compressed by clots hence it is rational to wait till resolution of hematoma (average 2-3 months).

SPETZLER MARTIN GRADING AVM M_X

AVM M_x ALGORITHM-ISRS GUIDELINES

WHAT HAPPENES TO VESSELS

AVM-IMAGING

- **ANGIOGRAM**
- MRI
- CECT-PLANNING

• DSA-DIGITAL SUBSTRACTION

- 3DFSPGR CONTRAST-**BETTER BRAIN VISUALIZATION** - T2W GRADIENT ECHO-**DETECT BLEED**

AVM- LITERTURE REVIEW

Author	Number of patients	Target volume	Dose (Gy) and number of fractions	Follow-u (months)	р *	Obliteration rate (%)	A	nnual hemorrhage rate after treatment (%)	Complications (%)
Hanakita (2014) ^[102]	65	10-20 cm ³	20 (Single)	60		76 (5 years)		1.9	3
Kim (2012) ^[97]	44	\geq 30 cm ³	13.9 (Repeat GKRS at an interval of 3 years)	109.4		34.1		6.8+	4.6
Sirin (2006) ^[95]	37	>15 ml	16 Gy (Volume-staged SRS, two sessions)	50		50		14+	8.1
Karlsson (2007) ^[98]	133	≥9 ml	Repeat radiosurgery			62		7	3
Lindvall (2015) ^[100]	24	$\geq 10 \text{ cm}^3$	HSRT (6-7 Gy in five fractions)	35.2		69.6		NA	4.2
Blamek (2013) ^[99]	49	Mean volume 25.7 cm³	HSRT (19.9 Gy in 2-4 fractions)	28.9		21 (at 3 years)		4.5	NA
Kano (2012) ^[103]	47	$\geq 10 \text{ cm}^3$	16 Gy (Volume-staged SRS in two sessions)	47		28		4.3	13
Yamamoto (2012) ^[60]	20	$\geq 10 \text{ cm}^3$	12-16 Gy (two-stage GKRS, 36 months apart)	105		65		9.7	6.5
Huang (2012) ^[104]	18	>15 ml	15 Gy (Volume-staged SRS in two to four stages)	NA		29 (5 years), 89 (10 years)		27.8+	NA

10/9/2023

*Median/mean follow-up in months. *Percentage of patients who developed a bleed during follow-up (and not the annual hemorrhagic rate) was reported in these series

STAGED VOLUME RADIOSURGERAY

Large AVMs in a planned staged fashion was undertaken to limit the radiation exposure to the surrounding normal brain

At the first radiosurgical procedure, the total volume of the AVM is estimated and a dose plan calculated that covers 10 cm3 –15 cm3, or one-half the nidus volume if the AVM is critically located (brainstem, thalamus, or basal ganglia).

At **6-month intervals thereafter**, radiosurgery was repeated to different portions of the AVM with the previous dose plan(s) being re-created utilizing intracranial landmarks to minimize radiation overlap

Int. J. Radiation Oncology Biol. Phys., Vol. 48, No. 3, pp. 817–824, 2000 Copyright © 2000 Elsevier Science Inc. Printed in the USA. All rights reserved 0360-3016/00/\$-see front matter

PII S0360-3016(00)00696-9

CLINICAL INVESTIGATION

THE RATIONALE AND TECHNIQUE OF STAGED-VOLUME ARTERIOVENOUS MALFORMATION RADIOSURGERY

BRUCE E. POLLOCK, M.D.,* ROBERT W. KLINE, PH.D.,* SCOTT L. STAFFORD, M.D.,* ROBERT L. FOOTE, M.D.,* AND PAULA J. SCHOMBERG, M.D.*

Departments of *Neurological Surgery, USA and [†]Radiation Oncology, Mayo Clinic and Foundation, Rochester, MN

Purpose: Stereotactic radiosurgery is an effective management strategy for properly selected arteriovenous malformation (AVM) patients. However, the risk of postradiosurgical radiation-related injury generally limits this procedure to patients with AVMs of an average diameter of 3 cm or less. Radiosurgery of large AVMs in a planned staged fashion was undertaken to limit the radiation exposure to the surrounding normal brain. Methods and Materials: Between April 1997 and December 1999, 10 patients with a median AVM volume of 17.4 cm³ (range, 7.4–53.3 cm³) underwent staged-volume radiosurgery (23 procedures). At the first radiosurgical procedure, the total volume of the AVM is estimated and a dose plan calculated that covers 10 cm³–15 cm³, or one-half the nidus volume if the AVM is critically located (brainstem, thalamus, or basal ganglia). At 6-month intervals thereafter, radiosurgery was repeated to different portions of the AVM with the previous dose plan(s) being re-created utilizing intracranial landmarks to minimize radiation overlap. Radiosurgical procedures were continued until the entire malformation has been irradiated

Brain

POLLOCK ET AL/IJROBP

STAGED VOLUME

MENINGIOMAS

- Meningiomas are generally benign lesions that account for 15–20 % of primary brain tumors, affect predominately middle- aged patients, and occur predominately in females
- The atypical and malignant meningiomas are characterized by **successive recurrences** and an aggressive behavior.
- Among all meningiomas, their incidence varies in the literature ranging from 4.7 to 7.1 % and 1.0 to 3.7 % for atypical and malignant, respectively

CASE **SELECTION FOR** MENINGIOMA

Fig. 20.16 Flowchart depicting selection criteria for stereotactic radiation of intracranial meningiomas used in our clinic

DOSE SELECTION

Table 20.5 Doses utilized in radiosurgery for intracra

	Peripheral			
Author, Year	Dose	Variation		
Hakim, 1998 [46]	15	9–20		
Liscak, 1999 [59]	12	10-14		
Kondziolka, 1999 [51]	16	9–25		
Shafron, 1999 [47]	12.7	10-20		
Stafford, 2001 [54]	16	12-36		
Villavicencio, 2001 [114]	15	12-18.5		
Friedman, 2005 [115]	16	10-20		
Hasegawa, 2007 [116]	13	7.5–17		
Pollock, 2012 [117]	16	N/A		
N/A Not Available, LINAC Linear Accelerator, GK				

anial meningiomas				
(G	 Technique 			
<u>`</u> .	LINAC			
	GK			
	GK			
	LINAC			
	GK			
GK				
Gamma Knife				

CONTROL RATES

Table 2

Literature review of aggressive meningiomas treated by SRS							
Author, Year	WHO Grade	Patie Nun	ıt ber	Control Rate	PFS		Overall Survival
Ojemann et al, ⁸⁵ 2000	3	19 (:	1)	_	26'	6 at 5 y	40% at 5 y
Stafford et al, ⁷⁸ 2001	2 3	13 9		68% at 5 y 0% at 5 y	_		76% at 5 y ^a 0% at 5 y ^a
Harris et al, ⁸⁶ 2003	2 3	18 12		_	83 72	6 at 5 y 6 at 5 y	59% at 5, 10 y 59% at 5 y, 0% at 10 y
Huffmann et al, ⁸⁷ 2005	2	15 (;	1)	93% at 6 mo	_		100% at 35 mo
Kondziolka et al, ⁴⁶ 2008	2 3	54 29		50% at 2 y 17% at 15 mo	_		
Attia et al, ⁸⁸ 2012	2	24		75% at 1 y 51% at 2 y 44% at 5 y	40'	6 at 2 y, 25% at 5 y	92% at 1 y, 67% at 2 y, 52% at 5 y
Mori et al, ⁸⁹ 2013	2 3	19 (: 4	2)	74% at 1 y 54% at 2 y 34% at 3 y	_		
Tamura et al, ⁹⁰ 2013	2 3	9 7		29% at 40.5 mo	• —		
Ferraro et al, ¹² 2014	2 3	31 4			95. 0%	7% at 1 y, 70.1% at 3 y at 1, 3 y	92.4% at 1 y, 83.4% at 3 y 33% at 1, 3 y

ACOUSTIC NEUROMA

ACOUSTIC NEUROMA

- 1. An **acoustic neuroma** is a noncancerous growth that develops on the eighth cranial nerve.
- 2. Also known as the **vestibulocochlear nerve**, it connects the inner ear with the brain and has two different parts.
- 3. One part is involved in transmitting sound; the other helps send balance information from the inner ear to the brain.

ICE CREAM CONE

BILATERAL ACOUSTIC NEUROMAS

ACOUSTIC **NEUROMAS-s/s**

Pretreatment symptoms [n(%)]Hearing loss Vertigo Facial paresthesia Facial weakness Dysphagia Headache Nausea Otalgia Ear fullness Tinnitus Gait imbalance Dysgeusia Facial twitching Diplopia Fatigue Vomiting

433 (87.3) 339 (88.0) 83 (16.7) 55 (14.3) 86 (17.3) 74 (19.2) 12 (2.4) 9 (2.3) 2(0.4)2(0.5)43 (8.7) 31 (8.0) 13 (2.6) 12(3.1)25 (5.0) 17(4.4)85 (17.1) 68 (17.7) 290 (58.5) 229 (59.5) 194 (39.1) 152 (39.5) 8 (1.6) 7 (1.8) 21(4.2)13 (3.4) 5 (1.0) 2 (0.5) 3 (0.8) 3 (0.6) 7 (1.8) 7 (1.4)

ACOUSTIC NEUROMA-OPTIONS

Radio surgery

10/9/2023

Wait and watch

Koos Grade I	Purely intracanalicular tumor limite auditory canal only
Koos Grade II	< 2 cm extracanalicular/CPA extens brainstem compression
Koos Grade III	Extracanalicular/CPA extension >2 brainstem compression
Koos Grade IV	Extracanalicular/CPA extension wit of brainstem compression

Table 23.3 Koos acoustic schwannoma tumor size grading criteria

KOOS GRADING

d to the internal

sion without

cm, with no

th any degree

KOOS GRADING

AUDIOMETRY

Table 23.1 Gardner-Robertson hearing (G-R) classification based on the poorer of either pure tone average (PTA) or speech discrimination score (SDS) class divisions [4]

G-R hearing class Class I (good) Class II (serviceable/useful) Class III (non-serviceable) Class IV (poor) Class V (none/deaf)

Criteria PTA 0–30dB and/or SDS 70–100 % PTA 31–50dB and/or SDS 50–69 % PTA 51–90dB and/or SDS 5–49 % PTA 91dB-max and/or SDS 1–4 % Untestable for PTA and/or SDS

Table 23.2	House-Brackmann facial nerve grade
Grade 1	Normal facial function in all regior
Grade 2	Mild dysfunction: light weakness n
Grade 3	Moderate weakness that is obvious disfiguring and with complete eyel
Grade 4	Moderate to severe weakness: obvi weakness with incomplete eyelid c
Grade 5	Severe weakness: barely perceptibl with incomplete eyelid closure
Grade 6	Complete paralysis, no movement,

FACIAL PALSY GRADING

s [5]

$\mathbf{1S}$

not obvious at rest

- at rest but not
- id closure
- ious disfiguring
- losure
- le muscle movement

loss of tone

Radiosurgery	Su
+	+-
++	+-
+++	+-
+	+-
++	+-
+++	+
+++	+-
++	+-
+++	+
	Radiosurgery + + ++ +++ +++ +++ +++ +++ +++ +++ ++

SURGICAL **INTERVENTION**

BEFORE-6M-2YEAR-POST SRS

2. (a) Tumor in 65-year-old man at time of treatment (approximate baseline volume of 800 mm³). (b) The same tumor 32 months of follow-up has undergone a 5-fold growth (approximate volume is 4080 mm³). With "freedom from ical intervention" used as a criterion, this obvious radiologic failure would be considered a success.

RADIOLOGICAL PROGRESSION

10/9/2023

DOSE DISTRIBUTION

CONTROL RATE

Long-term tumor control rates of acoustic schwannomas with radiosurgery vary from 90 % to 98 % in different series.

Chopra et al reported long-term results with acoustic schwannoma radiosurgery to 12–13 Gy for 216 patients at Pittsburgh With 98 % tumor control (freedom from resection) at 10 years

PITUTARY ADENOMAS

PITUITARY ADENOMAS

On the evidence available, no data support the superiority of SRS over FSRT for the treatment of patients with pituitary tumors.

Dose and fractionation are usually chosen on the basis of the size and position of the pituitary adenoma.

In current clinical practice, single-fraction SRS at doses of 16–25 Gy may represent a convenient approach to patients with a relatively small pituitary adenoma away from the optic chiasm, whereas FSRT is preferred over SRS for lesions >2.5–3 cm in size and/or involving the anterior optic pathway

CLASSICAL 2D PLAN

3/30/2019

Adenoma

HARDY'S CLASSIFICATION

Hardy's classification of pituitary adenomas. Grades I and II are enclosed within the sella. Grades III and IV are invasive. Extrasellar classifications A, B, and C are increasing amounts of direct suprasellar adenomas. D is asymmetric extension, and E is lateral extension into the cavernous sinus. (Adapted from Hardy J, Somma M. 1979).

Sella Turcica radiological cla	assification		E: Suprasellar	xtrasellar exten	ensions Parase	
Grade 0 (normal)	CS-	A	в	с	D	
Grade I	CS.					
Grade II	TO:	6	1	3		
Grade III	The second	N.		N.		
Grade IV	CS.		Symmetrical		Asymm	

CONSIDERATION OF STEREOTAXY

- 1. Commonly not practiced
 - Conventional results are best
 - 2. Close proximity to chiasm
- 2. Functional tumors need higher dose16–25 Gy in a single fraction prescribed to at least the 50 % isodose line. Higher doses are preferred
- 3. Nonfunctional tumors: 14–16 Gy in a singlefraction prescribed to at least the 50 % isodose line,
- 4. Fractionated radiation therapy is recommended for tumors in close proximity to the optic chiasm (3 mm) or with marked extension into the cavernous sinus

FSRT FOR PITUITARY

- Stereotactic radiotherapy originally referred to radiotherapy treatment delivered to an intracranial target lesion that was located by stereotactic means in a patient immobilised in a neurosurgical stereotactic head frame. The improved patient immobilisation, more accurate
- Tumour target localisation using cross-sectional image for treatment • planning, and high precision radiation treatment delivery to the tumour target, enabled a reduction in the margins around the radiotherapy target volume (the GTV to PTV margin), therefore achieving greater sparing of surrounding normal tissues than can be obtained with standard CRT techniques

SCRT VS SRT

- While SCRT is suitable for the treatment of all pituitary tumours, irrespective of size, shape or proximity to critical normal tissue structures,
- SRS is only suitable for treatment of small tumours away from the optic chiasm

CRANIOPHARYNGIOMA

CLINICAL INVESTIGATION

RADIOSURGERY FOR CRANIOPHARYNGIOMA

AJAY NIRANJAN, M.S., M.CH.,*[†] HIDEYUKI KANO, M.D., PH.D.,*[†] DAVID MATHIEU, M.D.,*^{†‡} DOUGLAS KONDZIOLKA, M.D., M.SC.,*^{†§} JOHN C. FLICKINGER, M.D.,*^{†§} AND L. DADE LUNSFORD, M.D.*^{†§}

Departments of *Neurological Surgery and[†]Radiation Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA; [‡]Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada; and [§]Center for Image-Guided Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA

Purpose: To analyze the outcomes of gamma knife stereotactic radiosurgery (SRS) for residual or recurrent craniopharyngiomas and evaluate the factors that optimized the tumor control rates. Methods and Materials: A total of 46 patients with craniopharyngiomas underwent 51 SRS procedures at University of Pittsburgh between 1988 and 2007. The median tumor volume was 1.0 cm³ (range, 0.07–8.0). The median prescription dose delivered to the tumor margin was 13.0 Gy (range, 9–20). The median maximal dose was 26.0 Gy (range, 20–50). The mean follow-up time was 62.2 months (range, 12–232). Results: The overall survival rate after SRS was 97.1% at 5 years. The 3- and 5-year progression-free survival rates (solid tumor control) were both 91.6%. The overall local control rate (for both solid tumor and cyst control) was

Brain

Dose Plan 1:

Higher margin dose at 50% isodose line Lower ma

Fig. 1. Dosimetric comparison of two dose plans for craniopharyngioma radiosurgery. Plan 1 designed using greater margin dose prescribed to 50% isodose line. Plan 2 designed using lower margin dose prescribed to lower isodose line (33%). Plan 1 shows a comparable Paddick conformity index (5) and reduced optic chiasm dose fall-off.

Dose Plan 2:

Lower margin dose at 33% isodose line

TRIGEMINAL NEURALGIA

TRIGEMINAL NEURALGIA

TRIFACIAL NEURALGIA

TRIGEMINAL NEURALGIA

Nearly 80 to 90% of all TN cases are caused by a neurovascular conflict involving the trigeminal nerve and an artery.

Another widely accepted cause of TN is mechanical compression of the trigeminal nerve root, usually within a few millimeters of entry into the pons—the root entry zone (REZ)

NERVE ROOT IRRITATION

Arterial compression

Demyelination

10/9/2023

97

I'm having a PAIN ATTACK in my face and CAN'T TALK NOW

PLEASE 1. Do NOT touch me 2. Do NOT move me 3. Don't ask questions 4. Just let me be

I know what to do. The attack will pass. It is NOT dangerous or contagious.

I have Trigeminal Neuralgia, The pain is higher than worst migraine and toothache combined.

Trigeminal Neuralgia : 'sudden, usually unilateral, severe, brief, in the distribution of one or more branches of the trigeminal nerve.

INVOLVED

- scalp
- back of the ear

IMAGING OF TRIGEMINAL NERVE

THE NEUROVASCULAR CONFLICT

OPTIONS OF TREATMENT TN

- **Medications** 1.
- **Percutaneous radiofrequency** 2. rhizotomy, glycerol injection
- 3. Balloon compression
- microvascular decompression 4. (MVD)
- **Stereotactic radiosurgery (SRS)** 5. 6. Among these available techniques, SRS has emerged as the least-invasive procedure, resulting in a significant pain relief with minimal side effects

ALGORITHM

Figure 1. Flow disaram showing the included and evaluated criteria of this schort. CKS, domma knife

@ MAYO FOUNDATION FOR MEDICAL EDUCATION AND RESEARCH. ALL RIGHTS RESERVED.

LITERATURE REVIEW-TG SRS

Overview of the recent clinical literature on SRS for trigeminal neuralgia

Author	Institution	Year	# Patients	Dose (Gy)	% Success	
Goss ¹⁸	Los Angeles Medical Center, Los Angeles	2003	25	90	100 at 18 months	
Smith ¹⁵	David Geffen School of Medicine, Los Angeles	2003	41	70 - 90	87 at 23 months	
Frighetto ¹³	David Geffen School of Medicine, Los Angeles	2004	17	90	95 at 21 months	
Chen ¹⁴	Los Angeles Medical Center, Los Angeles	2004	32	85 - 90	78 at 8 months	
Gorgulho ²²	David Geffen School of Medicine, Los Angeles	2006	37	70 - 90	67 at 13 months	
Pusztaszeri ²¹	Centre Hospitalier Universitaire Vaudois, Lausanne	2007	17	50 - 56	100 at 12 months	
Chen ¹⁶	Los Angeles Medical Center, Los Angeles	2008	82	85 - 90	85 at 18 months	
Zahra ¹⁷	Baylor College of Medicine, Houston	2009	20	80 - 90	95 at 14 months	

BRAIN METASTASIS

WHOLE BRAIN RADIOTHERAPY

- LONG TERM
 SURVIVOURS
- COGNITIVE DECLINE
- QOL POOR

BRAIN METS WITH BREAST CANCER

BRAIN METS WITH LUNG CANCER

NCCN GIUDELINES BRAIN METS

Limited number (1 - 3) and stable systemic disease then surgery or radiosurgery or whole brain (with RS favored over whole brain).

Multiple (>3) then whole brain or radiosurgery (consider RS if good performance and low overall tumor burden).

PITUTARY ADENOMAS

On the evidence available, no data support the superiority of SRS over FSRT for the treatment of patients with pituitary tumors.

In current clinical practice, single-fraction SRS at doses of 16– 25 Gy may represent a convenient approach to patients with a relatively small pituitary adenoma away from the optic chiasm, whereas FSRT is preferred over SRS for lesions >2.5–3 cm in size and/or involving the anterior optic pathway

PITUITARY **ADENOMAS**

CLASSICAL 2D PLAN

3/30/2019

10/9/2023

Adenoma

1cm

CAVERNOUS SINUS

CAROTID ARTERY

OPTI C CHIASMA

INFUNDIBULUM

THE DISTANCE

3/30/2019

10/9/2023

HARDY'S CLASSIFICATION

Hardy's classification of pituitary adenomas. Grades I and II are enclosed within the sella. Grades III and IV are invasive. Extrasellar classifications A, B, and C are increasing amounts of direct suprasellar adenomas. D is asymmetric extension, and E is lateral extension into the cavernous sinus. (Adapted from Hardy J, Somma M. 1979).

Sella Turcica radiological classification	Extrasellar extens Suprasellar			sions Parasellar	
Grado 0 (normal)	A	в	с	D	E
Grade I				-	
Grade II	6	1	3)
Grade III	N.		N.	N.	
Grade IV		Symmetrical		Asym	metrical

CONSIDERATION OF STEREOTAXY

- 1. Commonly not practiced
 - 1. Conventional results are best
 - Close proximity to chiasm
- 2. Functional tumors need higher dose16-25 Gy in a single fraction prescribed to at least the 50 % isodose line. Higher doses are preferred
- Nonfunctional tumors: 14–16 Gy in a singlefraction 3. prescribed to at least the 50 % isodose line,
- 4. Fractionated radiation therapy is recommended for tumors in close proximity to the optic chiasm (3 mm) or with marked extension into the cavernous sinus

FSRT FOR PITUITARY

- Stereotactic radiotherapy originally referred to radiotherapy treatment delivered to an intracranial target lesion that was located by stereotactic means in a patient immobilised in a neurosurgical stereotactic head frame. The improved patient immobilisation, more accurate
- Tumour target localisation using cross-sectional image for treatment planning, and high precision radiation treatment delivery to the tumour target, enabled a reduction in the margins around the radiotherapy target volume (the GTV to PTV margin), therefore achieving greater sparing of surrounding normal tissues than can be obtained with standard CRT techniques

SCRT VS SRT

- While SCRT is suitable for the treatment of all pituitary tumours, irrespective of size, shape or proximity to critical normal tissue structures,
- SRS is only suitable for treatment of small tumours away from the optic chiasm

CHORDOMA CASE SELECTION

Fig. 38.1 Radiosurgical management algorithm for skull base chordomas according to Pamir et al. [83]. Should re-operation not be possible, high-dose particle beam therapy or IMRT should be recommended

CHORDMA SERIES

Author	N	Median follow-up (range)	Median peripheral dose in Gy (range)	Local control* (%) Morbidity	Comments
Krishnan et al. [107]		4.8 years (0.8-11.4)	15(10-20)			
Chordoma	25			32‡	34 % (all with combined EBRT)	
Chondrosarcoma	4			100		
Feigl et al. [82]		17 months (6-36)†	17 (14–18)†			
Chordoma	3			33	Cranial nerve deficits, headaches, diplopia	
Chondrosarcoma	10			100		
Pamir et al. [89]		23.3 months (NA)†	NA	29	NA	
Chordoma	7					
Chang et al. [108]§		4 years (1-9)†	19.4(18-24)†			
Chordoma	10			80‡	None	
Hauptman et al. [85]	5	4.5 years	15.5 (to 90 % isodose line)	60	Cranial neuropathy, visual deficits	
Koga et al. [84]	14	65 months (12-167)	15 (10-20)			Local relapse in all cases of Radiosurgery after fractionated xRT, Margina doses of >16 Gy crucial
Chordoma	10	40.5 (12-167) months	13.7 (10–20)	15	1 transient visual deficit	
Chondrosarcoma	4	20 (45-145) months	15.5 (12–20)	100	1 transient visual deficit	
Martin et al. [109]		7.7 years (2-17)	16.5 (10-25)			
Chordoma	18	88 months		62.9‡	1 transient effect	
Chondrosarcoma	10	88 months		80‡		
Hasegawa et al. [110]		59 months (1-172)	14 (9–20)	80‡	1 worsening of facial numbness	Under 20 mL volume sig. better LC, at least 15 Gy marginal dose required
Chordoma	30			0.72		
Chondrosarcoma	7					

GLOMUS JUGULARAE

.

GLOMUS JUGULARAE

Table 38.6 Side effects of radiosurgery

			Median peripheral		
Author	N	Median follow-up (range)	dose (range)	Local control ^a	Morbidity
Jordan et al. [82]	8	27 months (9.7-102)b	16.3 Gy (12-20)b	1	Acute vertigo (1 patient)
Foote et al. [89]	25	37 months (11-118)	15 Gy (12-18)	1	Late vertigo (1 patient)
Eustacchio et al. [111]	19	7 years (1.5-10)	14 Gy (12-20)	0.95	None
Maarouf et al. [83]	12	4 years (0.8–9)	15 Gy (11-20)	1	Moderate facial palsy (1 patient)
Liscak et al. [88]	52	24 months (4-70)	16.5 Gy (10-30)	1	Tinnitus (2 patients)
Gottfried et al. [112] ^c	142	39.4 months ^b		0.98	8.5 % morbidity
Pollock et al. [113]	42	44 (6-149 months)	14.9 ^b (0.98	15 % new deficits (4× heat loss, 2× vocal cord paralys temporary imbalance/verti
Hurmuz et al. [96]	14	39 months (7-60)	25 (18-30) (in 1-5 fractions)	1	None
^a Crude local control ^b Mean values ^c Literature review	rates				

GLIOMA RECURRENCE

GLIOMA RECURRENCE-REIRRADIATION

18 Gy SRS salvage

Clinical Article

J Korean Neurosurg Soc 61 (4) : 516-524, 2018 https://doi.org/10.3340/jkns.2017.0259

Efficacy of Gamma Knife Radiosurgery for Recurrent High-Grade Gliomas with Limited Tumor Volume

Young-Jun Cheon, M.D., Tae-Young Jung, M.D., Ph.D., Shin Jung, M.D., Ph.D., In-Young Kim, M.D., Ph.D., Kyung-Sub Moon, M.D., Ph.D., Sa-Hoe Lim, Ph.D.

Department of Neurosurgery, Chonnam National University Hwasun Hospital, Chonnam National University School of Medicine, Hwasun, Korea

Objective : This study aims to determine whether gamma knife radiosurgery (GKR) improves survival in patients with recurrent highgrade gliomas.

Methods : Twenty nine patients with recurrent high-grade glioma underwent 38 GKR. The male-to-female ratio was 10 : 19, and the median age was 53.8 years (range, 20–75). GKR was performed in 11 cases of recurrent anaplastic oligodendrogliomas, five anaplastic astrocytomas, and 22 glioblastomas. The median prescription dose was 16 Gy (range, 10–24), and the median target volume was 7.0 mL (range, 1.1–15.7). Of the 29 patients, 13 (44.8%) received concurrent chemotherapy. We retrospectively analyzed the progression-free survival (PFS) and overall survival (OS) after GKR depending on the Eastern Cooperative Oncology Group (ECOG) performance status (PS), pathology, concurrent chemotherapy, radiation dose, and target tumor volume.

10/9/2023

pISSN 2005-3711 eISSN 1598-7876

10/9/2023

CNS -SRS RADIATION DOSES

DISEASE

AVM-[Chang TC/IJROBP/2012]

ACOUSTIC NEUROMA-[Steve Braunstein/Cancer Manag Res/2018]

PITUITARY ADENOMA	FUNCTIONAL	
[Gi. Minniti/Rep Pract Oncol Radiother/2016]	NON FUNCTION	
BRAIN METASTASIS-[RTOG 9505]	2cm	
	2.1 – 3 cm	
	3.1 - 4cm	

TRIGEMINAL NEURALGIA-[Pokhrel D/J Appl Clin Med Phys./2017]

MENINGIOMA-[POLLOCK BE/NEUROSURGERY/2012]

GLOMUS JUGULARAE-[Faycal El Majdoub/PLOS/2015]

CHORDOMA-[Juan J. Martin/JNS/2007]

REIRRADIATION GLIOMA-[Young-Jun Cheon/J Korean Neurosurg/2018]

CRANIOPHARYNGIOMA-[Tatsuya Kobayashi/Nagoya J Med Sci/201

LITERATURE COLLECTION

ONCOLOGY EDUCATIVE CARTOON/SLIDE - BY DR KANHU CHARAN PATRO, IMAGES & DATA- GOOGLE

29th JULY 2019/STEREOTAXY

	DOSE
	12-24Gy
	12Gy
	16-25Gy
JAL	15-16Gy
	24Gy
	18Gy
	15Gy
	80-90Gy
	15-16Gy
	15-16Gy
	15-16Gy
	12-24Gy
15]	13-20Gy

SBRT FOR VERTEBRAL HEMANGIOMA

12 Gy single dose Stereotactic Body Radiotherapy seem to be very effective in the management of symptomatic vertebral hemangioma

2002 to 2006 /13 patients

12 Gy with at least 6 coplanar or non-coplanar beams limiting the maximal dose to medulla to 8 Gy

2 cervical, 7 dorsal and 5 lumbar vertebrae, no one had medullar compression and no bleeding history

At this moment 10 patients (76,9%) and 11 localitations (78,5%) are with complete pain remission

L. Larrea/ijrobp/Supplement, 2007

ONCOLOGY EDUCATIVE CARTOON/SLIDE - BY DR KANHU CHARAN PATRO, IMAGES & DATA- GOOGI

VOLUME FOR SPINAL SBRT-ISRC RECOMMENDATIONS

- 1. GTV include the complete extent of the gross metastatic tumor using all available clinical information and imaging modalities, including MRI, CT, myelography, plain films, & pet,
- 2. CTV should include abnormal marrow signal suspicious for microscopic invasion and an adjacent normal bony expansion to account for subclinical tumor spread.
- 3. No epidural CTV expansion is recommended without epidural disease.
- 4. As a general rule, the entire vertebral body, pedicle, transverse process, lamina, or spinous process was included in the CTV if any portion of these regions contained the GTV. Additionally, the next adjacent normal marrow space was typically included in the bony CTV.
- 5. Circumferential CTVs encircling the cord should be used only when the vertebral body, bilateral pedicles lamina, & spinous process are all involved or there is extensive metastatic disease along the circumference of the epidural space.

6. NO PTV

13TH MARCH 2017/SPINAL SBRT

ONCOLOGY EDUCATIVE CARTOON/SLIDE - BY DR KANHU CHARAN PATRO, IMAGES & DATA- GOOG

